cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178455 Partial sums of floor(2^n/7).

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 16, 34, 70, 143, 289, 581, 1166, 2336, 4676, 9357, 18719, 37443, 74892, 149790, 299586, 599179, 1198365, 2396737, 4793482, 9586972, 19173952, 38347913, 76695835, 153391679, 306783368, 613566746, 1227133502
Offset: 0

Views

Author

Mircea Merca, Dec 22 2010

Keywords

Comments

Partial sums of A155803.

Examples

			a(6) = 0 + 0 + 0 + 1 + 2 + 4 + 9 = 16.
		

Crossrefs

Cf. A155803.

Programs

  • Magma
    [Round((12*2^n-14*n-15)/42): n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
  • Maple
    seq(round((6*2^n-7*n-6)/21), n=0..32)
  • Mathematica
    Accumulate[Floor[2^Range[0,40]/7]] (* or *) LinearRecurrence[{3,-2,1,-3,2},{0,0,0,1,3},40] (* Harvey P. Dale, May 02 2015 *)

Formula

a(n) = round((12*2^n - 14*n - 15)/42).
a(n) = round((6*2^n - 7*n - 5)/21).
a(n) = round((6*2^n - 7*n - 10)/21).
a(n) = round((6*2^n - 7*n - 6)/21).
a(n) = a(n-3) + 2^(n-2) - 1, n > 2.
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - 3*a(n-4) + 2*a(n-5), n > 4.
G.f.: -x^3 / ( (2*x-1)*(1 + x + x^2)*(x-1)^2 ). - R. J. Mathar, Dec 22 2010
a(n) = floor((2^(n+1))/7) - floor((n+1)/3). - Ridouane Oudra, Aug 31 2019