cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178420 Partial sums of floor(2^n/3).

Original entry on oeis.org

0, 1, 3, 8, 18, 39, 81, 166, 336, 677, 1359, 2724, 5454, 10915, 21837, 43682, 87372, 174753, 349515, 699040, 1398090, 2796191, 5592393, 11184798, 22369608, 44739229, 89478471, 178956956, 357913926, 715827867, 1431655749, 2863311514
Offset: 1

Views

Author

Mircea Merca, Dec 21 2010

Keywords

Comments

Essentially the same as A011377: 0 followed by the terms of A011377. - Joerg Arndt, Apr 22 2016
Partial sums of A000975(n-1).

Examples

			a(5) = 0 + 1 + 2 + 5 + 10 = 18.
		

Crossrefs

Column k=2 of A368296.

Programs

  • Magma
    [Floor((4*2^n-3*n-4)/6): n in [1..30]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(round((4*2^n-3*n-4)/6),n=1..50)
  • Mathematica
    f[n_] := Floor[(4 2^n - 3 n - 4)/6]; f[Range[60]] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2011 *)
    CoefficientList[Series[x / ((1 + x) (1 - 2 x) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    LinearRecurrence[{3,-1,-3,2},{0,1,3,8},40] (* or *) Accumulate[ Table[ Floor[ 2^n/3],{n,40}]] (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    a(n)=(4<Charles R Greathouse IV, Jul 31 2013

Formula

a(n) = A011377(n-1) for n >= 1. - Joerg Arndt, Apr 22 2016
a(n) = round((8*2^n - 6*n - 9)/12).
a(n) = floor((4*2^n - 3*n - 4)/6).
a(n) = ceiling((4*2^n - 3*n - 5)/6).
a(n) = round((4*2^n - 3*n - 4)/6).
a(n) = a(n-2) + 2^(n-1) - 1, n > 2.
From Bruno Berselli, Jan 15 2011: (Start)
a(n) = (8*2^n - 6*n - 9 + (-1)^n)/12.
G.f.: x^2/((1+x)*(1-2*x)*(1-x)^2). (End)
G.f.: Q(0)/(3*(1-x)^2), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) = 2*a(n-1) + floor(n/2) for n > 1. - Bruno Berselli, Apr 30 2014
a(n) = floor(2^(n+1)/3) - floor((n+1)/2). - Seiichi Manyama, Dec 22 2023

A368343 Square array T(n,k), n >= 3, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 7, 5, 2, 1, 5, 13, 16, 7, 2, 1, 6, 21, 41, 34, 9, 3, 1, 7, 31, 86, 125, 70, 12, 3, 1, 8, 43, 157, 346, 377, 143, 15, 3, 1, 9, 57, 260, 787, 1386, 1134, 289, 18, 4, 1, 10, 73, 401, 1562, 3937, 5547, 3405, 581, 22, 4
Offset: 3

Views

Author

Seiichi Manyama, Dec 22 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1,     1, ...
  1,  2,   3,    4,    5,     6,     7, ...
  1,  3,   7,   13,   21,    31,    43, ...
  2,  5,  16,   41,   86,   157,   260, ...
  2,  7,  34,  125,  346,   787,  1562, ...
  2,  9,  70,  377, 1386,  3937,  9374, ...
  3, 12, 143, 1134, 5547, 19688, 56247, ...
		

Crossrefs

Columns k=0..4 give A002264, A130518, A178455, A368344, A368345.

Programs

  • PARI
    T(n, k) = sum(j=0, n, k^(n-j)*(j\3));

Formula

T(n,k) = T(n-3,k) + Sum_{j=0..n-3} k^j.
T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k^2+k+1)) = Sum_{j=0..n} floor(k^j/(k^3-1)) for k > 1.
T(n,k) = (k+1)*T(n-1,k) - k*T(n-2,k) + T(n-3,k) - (k+1)*T(n-4,k) + k*T(n-5,k).
G.f. of column k: x^3/((1-x) * (1-k*x) * (1-x^3)).
T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^3-1)) - floor((n+1)/3)) for k > 1.

A368346 a(n) = Sum_{k=0..n} 2^(n-k) * floor(k/4).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 15, 32, 66, 134, 270, 543, 1089, 2181, 4365, 8734, 17472, 34948, 69900, 139805, 279615, 559235, 1118475, 2236956, 4473918, 8947842, 17895690, 35791387, 71582781, 143165569, 286331145, 572662298, 1145324604, 2290649216, 4581298440
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, m=4, k=2) = (k^(n+1)\(k^m-1)-(n+1)\m)/(k-1);
    
  • Python
    def A368346(n): return (1<>2) # Chai Wah Wu, Dec 22 2023

Formula

a(n) = a(n-4) + 2^(n-3) - 1.
a(n) = Sum_{k=0..n} floor(2^k/15).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-4) - 3*a(n-5) + 2*a(n-6).
G.f.: x^4/((1-x) * (1-2*x) * (1-x^4)).
a(n) = floor(2^(n+1)/15) - floor((n+1)/4).
Showing 1-3 of 3 results.