cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178459 Partial sums of floor(2^n/31).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 15, 31, 64, 130, 262, 526, 1054, 2111, 4225, 8453, 16909, 33821, 67646, 135296, 270596, 541196, 1082396, 2164797, 4329599, 8659203, 17318411, 34636827, 69273660, 138547326, 277094658, 554189322, 1108378650, 2216757307, 4433514621, 8867029249, 17734058505, 35468117017, 70936234042
Offset: 1

Views

Author

Mircea Merca, Dec 22 2010

Keywords

Comments

Partial sums of A119610(n-4).

Examples

			a(29) = 0 + 0 + 0 + 0 + 1 + 2 + 4 + 8 + 16 + 33 + 66 + 132 + 264 + 528 + 1057 + 2114 + 4228 + 8456 + 16912 + 33825 + 67650 + 135300 + 270600 + 541200 + 1082401 + 2164802 + 4329604 + 8659208 + 17318416 = 34636827.
		

Crossrefs

Cf. A119610.

Programs

  • Magma
    [Round((10*2^n-31*n-7)/155): n in [1..40]]; // Vincenzo Librandi, Jun 21 2011
  • Maple
    seq(round((10*2^n-31*n-7)/155),n=1..32)
  • Mathematica
    Floor[2^Range[40]/31]//Accumulate (* Harvey P. Dale, May 11 2018 *)

Formula

a(n) = round((10*2^n - 31*n - 7)/155).
a(n) = floor((10*2^n - 31*n + 22)/155).
a(n) = ceiling((10*2^n - 31*n - 36)/155).
a(n) = round((10*2^n - 31*n - 10)/155).
a(n) = a(n-5) + 2^(n-4) - 1, n > 4,
G.f.: -x^5/((x-1)^2*(2*x-1)*(x^4 + x^3 + x^2 + x + 1)). - Colin Barker, Oct 27 2012
From Seiichi Manyama, Dec 22 2023: (Start)
a(n) = Sum_{k=0..n} 2^(n-k) * floor(k/5).
a(n) = floor(2^(n+1)/31) - floor((n+1)/5). (End)