A175545 Numbers n (relatively prime to 10) such that the decimal form of the period of 1/n is prime.
3, 27, 33, 333, 369, 909, 2151, 2439, 2997, 3333, 27027, 33333, 37683, 41841, 76923, 90909, 142857, 194841, 243603, 333333
Offset: 1
Examples
27 is in the sequence because 1/27 = 0.037 037 ... and 37 is prime. 2997 is in the sequence because 1/2997 = 0.000333667 000333667 ... and 333667 is prime.
References
- H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, 'Die periodischen Dezimalbrueche'.
Programs
-
Maple
with(numtheory): Digits:=4000:nn:=4000:for n from 3 by 2 to nn do:z:=evalf(1/n): indic:=0:for p from 1 to nn do:if irem(10^p, n) = 1 and gcd(n, 5) = 1 and indic=0 then pp:=p:indic:=1:z1:=floor(z*10^pp): else fi:od:if indic=1 and type(z1,prime)=true then print(n):else fi:od:
Extensions
Extended and name corrected by T. D. Noe, Nov 18 2010
a(17)-a(20) from Ray Chandler, Apr 17 2017
Comments