A178511 a(n) = (1/119)*(100^n -(-19)^n).
1, 81, 8461, 839241, 84054421, 8402966001, 840343645981, 84033470726361, 8403364056199141, 840336082932216321, 84033614424287889901, 8403361325938530091881, 840336134807167928254261, 84033613438663809363169041, 8403361344665387622099788221
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..150
- Index entries for linear recurrences with constant coefficients, signature (81,1900).
Programs
-
Magma
[(1/119)*(100^n -(-19)^n): n in [1..20]]; // Vincenzo Librandi, May 17 2011
-
Mathematica
LinearRecurrence[{81,1900},{1,81},20] (* Harvey P. Dale, Nov 12 2022 *)
-
PARI
Vec(-x/((19*x+1)*(100*x-1)) + O(x^20)) \\ Colin Barker, Oct 02 2015
Formula
a(n+1) = a(n)*100 +- 19^n with a(0)=0 and a(1)= 1.
From Colin Barker, Oct 02 2015: (Start)
a(n) = 81*a(n-1) + 1900*a(n-2) for n > 2.
G.f.: -x / ((19*x+1)*(100*x-1)).
(End)
Comments