cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178512 Reversed decimal expansions of A178510.

Original entry on oeis.org

1, 121, 14521, 1742521, 209102521, 25092302521, 3011076302521, 361329156302521, 43359498756302521, 5203139850756302521, 624376782090756302521, 74925213850890756302521, 8991025662106890756302521, 1078923079452826890756302521, 129470769534339226890756302521
Offset: 1

Views

Author

Mark Dols, May 29 2010

Keywords

Comments

Related to backward decimal expansion of fraction 1/119 and Pell numbers. [How? - Joerg Arndt, May 14 2011]

Crossrefs

Programs

Formula

a(n) = 120*a(n-1) + 1.
From Colin Barker, Oct 02 2015: (Start)
a(n) = 121*a(n-1) - 120*a(n-2) for n > 2.
G.f.: x / ((x-1)*(120*x-1)).
(End)

A178513 Partial sums of 80^n.

Original entry on oeis.org

1, 81, 6481, 518481, 41478481, 3318278481, 265462278481, 21236982278481, 1698958582278481, 135916686582278481, 10873334926582278481, 869866794126582278481, 69589343530126582278481, 5567147482410126582278481, 445371798592810126582278481
Offset: 0

Views

Author

Mark Dols, May 29 2010

Keywords

Comments

Related to backward decimal expansion of fraction 1/79 and Pell numbers. [In which way? - Joerg Arndt, May 17 2011]

Crossrefs

Programs

  • Mathematica
    Accumulate[80^Range[0,20]] (* Harvey P. Dale, Aug 11 2014 *)

Formula

a(n) = 80*a(n-1) + 1.
a(n) = (80^(n+1)-1)/79.
G.f.: 1/((1-80*x)*(1-x)).

A178643 Square array read by antidiagonals. Convolution of a(n) = 2*a(n-1) - a(n-2) and 10^n.

Original entry on oeis.org

1, 10, 2, 100, 19, 4, 1000, 190, 36, 8, 10000, 1900, 361, 68, 16, 100000, 19000, 3610, 686, 128, 32, 1000000, 190000, 36100, 6859, 1304, 240, 64, 10000000, 1900000, 361000, 68590, 13032, 2480, 448, 128, 100000000, 19000000, 3610000, 685900, 130321, 24760, 4720, 832, 256
Offset: 1

Views

Author

Mark Dols, May 31 2010

Keywords

Comments

Diagonals sum up to A014824.
Alternating diagonal sum gives decimal expansion of fraction 1/119 (A021123).

Examples

			Array starts:
     1,    2,    4,    8,
    10,   19,   36,   68,
   100,  190,  361,  686,
  1000, 1900, 3610, 6859,
		

Crossrefs

Programs

  • Sage
    def a(n,k):
        T = [[0 for j in range(k+1)] for i in range(n+1)]
        for i in range(n+1): T[i][0] = 10^i
        for j in range(1, k+1):
            T[0][j] = 2^j
            for i in range(1, n+1): T[i][j] = 2*T[i][j-1] - T[i-1][j-1]
        return T[n][k]  # Robin Visser, Aug 09 2023

Formula

T(n,k) = 2*T(n,k-1) - T(n-1,k-1) for all n, k > 0, where T(n,0) = 10^n and T(0,k) = 2^k. - Robin Visser, Aug 09 2023

Extensions

More terms from Robin Visser, Aug 09 2023
Showing 1-3 of 3 results.