cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178521 The cost of all leaves in the Fibonacci tree of order n.

Original entry on oeis.org

0, 0, 3, 7, 17, 35, 70, 134, 251, 461, 835, 1495, 2652, 4668, 8163, 14195, 24565, 42331, 72674, 124354, 212155, 360985, 612743, 1037807, 1754232, 2959800, 4985475, 8384479, 14080601, 23614931, 39556030, 66181310, 110608187, 184670693, 308030923, 513334855
Offset: 0

Views

Author

Emeric Deutsch, Jun 14 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a leaf of a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this leaf.

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Julia
    # The function 'fibrec' is defined in A354044.
    function A178521(n)
        n < 2 && return BigInt(0)
        a, b = fibrec(n - 1)
        a*n + (n - 1)*b
    end
    println([A178521(n) for n in 0:35]) # Peter Luschny, May 16 2022
  • Maple
    with(combinat); seq(n*fibonacci(n+1)-fibonacci(n), n = 0 .. 35);
  • Mathematica
    Table[n Fibonacci[n + 1] - Fibonacci[n], {n, 0, 40}]  (* Harvey P. Dale, Apr 21 2011 *)
    Table[(n - 1) Fibonacci[n] + n Fibonacci[n - 1], {n, 0, 40}] (* Bruno Berselli, Dec 06 2013 *)
  • PARI
    concat(vector(2), Vec(x^2*(x+3)/(x^2+x-1)^2 + O(x^50))) \\ Colin Barker, Jul 26 2017
    

Formula

a(n) = n*F(n+1) - F(n), where F(k) = A000045(k).
G.f.: x^2*(x+3)/(x^2+x-1)^2. - Colin Barker, Nov 11 2012
a(n) = Sum_{k=1..n-1} F(k) * L(n-k+1) where F(n) = A000045(n), L(n) = A000032(n). - Gary Detlefs, Dec 29 2012
a(n) = (n-1)*F(n) + n*F(n-1). - Bruno Berselli, Dec 06 2013
a(0) = 0, a(n) = A023607(n-1) + A099920(n-1). - Collin Berman, Dec 12 2016
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4). - Wesley Ivan Hurt, Dec 14 2016
a(n) = (n+1)*F(n+1) - F(n+2). - Bruno Berselli, Jul 26 2017
a(n) = (2^(-1-n)*(2*sqrt(5)*((1-sqrt(5))^n - (1+sqrt(5))^n) + (-(1-sqrt(5))^n*(-5+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5)))*n))/5. - Colin Barker, Jul 26 2017
a(n) = (-n*sin(c*(-n - 1)) - sin(c*n)*i)/((-i)^(-n)*sqrt(5/4)) where c = arccos(i/2). - Peter Luschny, May 16 2022