A178521 The cost of all leaves in the Fibonacci tree of order n.
0, 0, 3, 7, 17, 35, 70, 134, 251, 461, 835, 1495, 2652, 4668, 8163, 14195, 24565, 42331, 72674, 124354, 212155, 360985, 612743, 1037807, 1754232, 2959800, 4985475, 8384479, 14080601, 23614931, 39556030, 66181310, 110608187, 184670693, 308030923, 513334855
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Julia
# The function 'fibrec' is defined in A354044. function A178521(n) n < 2 && return BigInt(0) a, b = fibrec(n - 1) a*n + (n - 1)*b end println([A178521(n) for n in 0:35]) # Peter Luschny, May 16 2022
-
Maple
with(combinat); seq(n*fibonacci(n+1)-fibonacci(n), n = 0 .. 35);
-
Mathematica
Table[n Fibonacci[n + 1] - Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Apr 21 2011 *) Table[(n - 1) Fibonacci[n] + n Fibonacci[n - 1], {n, 0, 40}] (* Bruno Berselli, Dec 06 2013 *)
-
PARI
concat(vector(2), Vec(x^2*(x+3)/(x^2+x-1)^2 + O(x^50))) \\ Colin Barker, Jul 26 2017
Formula
a(n) = n*F(n+1) - F(n), where F(k) = A000045(k).
G.f.: x^2*(x+3)/(x^2+x-1)^2. - Colin Barker, Nov 11 2012
a(n) = Sum_{k=1..n-1} F(k) * L(n-k+1) where F(n) = A000045(n), L(n) = A000032(n). - Gary Detlefs, Dec 29 2012
a(n) = (n-1)*F(n) + n*F(n-1). - Bruno Berselli, Dec 06 2013
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4). - Wesley Ivan Hurt, Dec 14 2016
a(n) = (n+1)*F(n+1) - F(n+2). - Bruno Berselli, Jul 26 2017
a(n) = (2^(-1-n)*(2*sqrt(5)*((1-sqrt(5))^n - (1+sqrt(5))^n) + (-(1-sqrt(5))^n*(-5+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5)))*n))/5. - Colin Barker, Jul 26 2017
a(n) = (-n*sin(c*(-n - 1)) - sin(c*n)*i)/((-i)^(-n)*sqrt(5/4)) where c = arccos(i/2). - Peter Luschny, May 16 2022
Comments