cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178591 Decimal expansion of (9 + sqrt(165))/14.

Original entry on oeis.org

1, 5, 6, 0, 3, 7, 3, 7, 5, 5, 6, 1, 8, 9, 3, 7, 7, 8, 7, 1, 5, 1, 2, 0, 7, 0, 3, 4, 1, 1, 7, 1, 3, 8, 6, 0, 1, 3, 9, 0, 5, 2, 5, 1, 7, 9, 3, 9, 7, 1, 6, 1, 7, 0, 5, 0, 2, 0, 4, 6, 2, 2, 3, 1, 0, 1, 8, 4, 6, 5, 6, 9, 3, 1, 9, 8, 4, 1, 5, 9, 5, 7, 9, 3, 0, 1, 3, 1, 1, 6, 7, 4, 5, 5, 5, 7, 9, 8, 0, 4, 0, 5, 2, 4, 6
Offset: 1

Views

Author

Klaus Brockhaus, May 30 2010

Keywords

Comments

Continued fraction expansion of (9 + sqrt(165))/14 is A093148.

Examples

			(9 + sqrt(165))/14 = 1.56037375561893778715...
		

Crossrefs

Cf. A178592 (decimal expansion of sqrt(165)), A093148 (repeat 1, 1, 1, 3).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (9+Sqrt(165))/14; // G. C. Greubel, Jan 30 2019
    
  • Mathematica
    RealDigits[(9+Sqrt[165])/14, 10, 100][[1]] (* G. C. Greubel, Jan 30 2019 *)
  • PARI
    default(realprecision, 100); (9+sqrt(165))/14 \\ G. C. Greubel, Jan 30 2019
    
  • Sage
    numerical_approx((9+sqrt(165))/14, digits=100) # G. C. Greubel, Jan 30 2019

A041305 Denominators of continued fraction convergents to sqrt(165).

Original entry on oeis.org

1, 1, 6, 13, 71, 84, 2087, 2171, 12942, 28055, 153217, 181272, 4503745, 4685017, 27928830, 60542677, 330642215, 391184892, 9719079623, 10110264515, 60270402198, 130651068911, 713525746753, 844176815664, 20973769322689, 21817946138353
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,6,13,71,84,2087,2171,12942,28055,153217, 181272]; [n le 12 select I[n] else 2158*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
  • Mathematica
    Denominator[Convergents[Sqrt[165], 30]] (* Vincenzo Librandi, Dec 15 2013 *)

Formula

G.f.: -(x^10 -x^9 +6*x^8 -13*x^7 +71*x^6 -84*x^5 -71*x^4 -13*x^3 -6*x^2 -x -1) / ((x^4 -13*x^2 +1)*(x^8 +13*x^6 +168*x^4 +13*x^2 +1)). - Colin Barker, Nov 15 2013
a(n) = 2158*a(n-6) - a(n-12). - Vincenzo Librandi, Dec 15 2013

Extensions

More terms from Colin Barker, Nov 15 2013
Showing 1-2 of 2 results.