cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A093148 a(n) = gcd(Fibonacci(n+5), Fibonacci(n+1)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1
Offset: 0

Views

Author

Paul Barry, Apr 02 2004

Keywords

Comments

From Klaus Brockhaus, May 30 2010: (Start)
Periodic sequence: Repeat [1, 1, 1, 3].
Continued fraction expansion of (9+sqrt(165))/14.
Decimal expansion of 371/3333. (End)
Final nonzero digit of n^n in base 4. - José María Grau Ribas, Jan 19 2012

Crossrefs

Programs

Formula

G.f.: (1+x+x^2+3*x^3)/(1-x^4); a(n) = 3/2-sin(Pi*n/2)-cos(Pi*n)/2.
From Klaus Brockhaus, May 30 2010: (Start)
a(n) = a(n-4) for n > 3; a(0) = a(1) = a(2) = 1, a(3) = 3.
a(n) = (3-(-1)^n+(1-(-1)^n)*i*i^n)/2 where i = sqrt(-1). (End)
a(n) = 1 + 2*0^mod(n+1, 4). - Wesley Ivan Hurt, Oct 23 2014

A178592 Decimal expansion of sqrt(165).

Original entry on oeis.org

1, 2, 8, 4, 5, 2, 3, 2, 5, 7, 8, 6, 6, 5, 1, 2, 9, 0, 2, 0, 1, 1, 6, 8, 9, 8, 4, 7, 7, 6, 3, 9, 9, 4, 0, 4, 1, 9, 4, 6, 7, 3, 5, 2, 5, 1, 1, 5, 6, 0, 2, 6, 3, 8, 7, 0, 2, 8, 6, 4, 7, 1, 2, 3, 4, 2, 5, 8, 5, 1, 9, 7, 0, 4, 7, 7, 7, 8, 2, 3, 4, 1, 1, 0, 2, 1, 8, 3, 6, 3, 4, 4, 3, 7, 8, 1, 1, 7, 2, 5, 6, 7, 3, 4, 5
Offset: 2

Views

Author

Klaus Brockhaus, May 30 2010

Keywords

Comments

Continued fraction expansion of sqrt(165) is A010213.

Examples

			sqrt(165) = 12.84523257866512902011...
		

Crossrefs

Cf. A178591 (decimal expansion of (9+sqrt(165))/14), A010213 (12 followed by (repeat 1, 5, 2, 5, 1, 24)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(165); // G. C. Greubel, Jan 30 2019
    
  • Mathematica
    RealDigits[Sqrt[165],10,120][[1]] (* Harvey P. Dale, May 30 2012 *)
  • PARI
    default(realprecision, 100); sqrt(165) \\ G. C. Greubel, Jan 30 2019
    
  • Sage
    numerical_approx(sqrt(165), digits=100) # G. C. Greubel, Jan 30 2019
Showing 1-2 of 2 results.