cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A047246 Numbers that are congruent to {0, 1, 2, 3} mod 6.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 18, 19, 20, 21, 24, 25, 26, 27, 30, 31, 32, 33, 36, 37, 38, 39, 42, 43, 44, 45, 48, 49, 50, 51, 54, 55, 56, 57, 60, 61, 62, 63, 66, 67, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047238 with A047241. - Guenther Schrack, Feb 12 2019

Crossrefs

Cf. A045331 (primes congruent to {1,2,3} mod 6), A047238, A047241.
Complement: A047257.

Programs

  • GAP
    Filtered([0..100],n->n mod 6 = 0 or n mod 6 = 1 or n mod 6 = 2 or n mod 6 = 3); # Muniru A Asiru, Feb 20 2019
  • Haskell
    a047246 n = a047246_list !! (n-1)
    a047246_list = [0..3] ++ map (+ 6) a047246_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • Magma
    [Floor((6/5)*Floor(5*(n-1)/4)) : n in [1..100]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047246:=n->(6*n-9-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/4: seq(A047246(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(6n-9-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(1+x+x^2+3*x^3)/((1-x)*(1-x^4)))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(1+x+x^2+3*x^3)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
    

Formula

G.f.: x^2*(1+x+x^2+3*x^3) / ((1+x)*(1-x)^2*(1+x^2)). - R. J. Mathar, Oct 08 2011
a(n) = floor((6/5)*floor(5*(n-1)/4)). - Bruno Berselli, May 03 2016
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 9 - i^(2*n) - (1-i)*i^(-n) - (1+i)*i^n)/4 where i=sqrt(-1).
a(2*n) = A047241(n), a(2*n-1) = A047238(n). (End)
E.g.f.: (6 + sin(x) - cos(x) + (3*x - 4)*sinh(x) + (3*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, May 21 2016
From Guenther Schrack, Feb 12 2019: (Start)
a(n) = (6*n - 9 - (-1)^n - 2*(-1)^(n*(n+1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=1, a(3)=2, a(4)=3, for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = Pi/(6*sqrt(3)) + 2*log(2)/3. - Amiram Eldar, Dec 16 2021
a(n)-a(n-1) = A093148(n-2). - R. J. Mathar, May 01 2024

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A167816 Numerator of x(n) = x(n-1) + x(n-2), x(0)=0, x(1)=1/3; denominator=A167817.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 8, 13, 7, 34, 55, 89, 48, 233, 377, 610, 329, 1597, 2584, 4181, 2255, 10946, 17711, 28657, 15456, 75025, 121393, 196418, 105937, 514229, 832040, 1346269, 726103, 3524578, 5702887, 9227465, 4976784, 24157817, 39088169, 63245986, 34111385
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2009

Keywords

Crossrefs

Programs

  • Magma
    [0,1,1] cat [Numerator(Fibonacci(n)/Fibonacci(2*n-4)): n in [3..40]]; // Vincenzo Librandi, Jun 28 2016
  • Mathematica
    Numerator[LinearRecurrence[{1,1},{0,1/3},40]] (* Harvey P. Dale, Dec 07 2014 *)
    LinearRecurrence[{0, 0, 0, 7, 0, 0, 0, -1},{0, 1, 1, 2, 1, 5, 8, 13},39] (* Ray Chandler, Aug 03 2015 *)

Formula

a(n) = (a(n-1)*A093148(n+2) + a(n-2)*A093148(n+1))/A093148(n-1) for n>1.
a(4*n) = A004187(n) = (a(4*n-1) + a(4*n-2))/3;
a(4*n+1) = A033889(n) = 3*a(4*n-1) + a(4*n-2);
a(4*n+2) = A033890(n) = a(4*n-1) + 3*a(4*n-2);
a(4*n+3) = A033891(n) = a(4*n-1) + a(4*n-2).
Numerator of Fibonacci(n) / Fibonacci(2n-4) for n>=3. - Gary Detlefs, Dec 20 2010

Extensions

Definition corrected by D. S. McNeil, May 09 2010

A047227 Numbers that are congruent to {1, 2, 3, 4} mod 6.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, 28, 31, 32, 33, 34, 37, 38, 39, 40, 43, 44, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 61, 62, 63, 64, 67, 68, 69, 70, 73, 74, 75, 76, 79, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 97, 98
Offset: 1

Views

Author

Keywords

Comments

a(k)^m is a term for k and m in N. - Jerzy R Borysowicz, Apr 18 2023

Crossrefs

Complement of A047264. Equals A203016 divided by 3.

Programs

  • Magma
    [n: n in [0..100] | n mod 6 in [1..4]]; // Vincenzo Librandi, Jan 06 2013
    
  • Maple
    A047227:=n->(6*n-5-I^(2*n)+(1+I)*I^(1-n)+(1-I)*I^(n-1))/4: seq(A047227(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
  • Mathematica
    Complement[Range[100], Flatten[Table[{6n - 1, 6n}, {n, 0, 15}]]] (* Alonso del Arte, Jul 07 2011 *)
    Select[Range[100], MemberQ[{1, 2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,1,0,0,1]^(n-1)*[1;2;3;4;7])[1,1] \\ Charles R Greathouse IV, May 03 2023

Formula

From Johannes W. Meijer, Jul 07 2011: (Start)
a(n) = floor((n+2)/4) + floor((n+1)/4) + floor(n/4) + 2*floor((n-1)/4) + floor((n+3)/4).
G.f.: x*(1 + x + x^2 + x^3 + 2*x^4)/(x^5 - x^4 - x + 1). (End)
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6n - 5 - i^(2n) + (1+i)*i^(1-n) + (1-i)*i^(n-1))/4 where i=sqrt(-1).
a(2n) = A047235(n), a(2n-1) = A047241(n). (End)
E.g.f.: (4 + sin(x) - cos(x) + (3*x - 2)*sinh(x) + 3*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 21 2016
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = A047246(n) + 1.
a(n+2) - a(n+1) = A093148(n) for n>0.
a(1-n) = - A047247(n). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 + 2*log(2)/3 - log(3)/4. - Amiram Eldar, Dec 17 2021

A178591 Decimal expansion of (9 + sqrt(165))/14.

Original entry on oeis.org

1, 5, 6, 0, 3, 7, 3, 7, 5, 5, 6, 1, 8, 9, 3, 7, 7, 8, 7, 1, 5, 1, 2, 0, 7, 0, 3, 4, 1, 1, 7, 1, 3, 8, 6, 0, 1, 3, 9, 0, 5, 2, 5, 1, 7, 9, 3, 9, 7, 1, 6, 1, 7, 0, 5, 0, 2, 0, 4, 6, 2, 2, 3, 1, 0, 1, 8, 4, 6, 5, 6, 9, 3, 1, 9, 8, 4, 1, 5, 9, 5, 7, 9, 3, 0, 1, 3, 1, 1, 6, 7, 4, 5, 5, 5, 7, 9, 8, 0, 4, 0, 5, 2, 4, 6
Offset: 1

Views

Author

Klaus Brockhaus, May 30 2010

Keywords

Comments

Continued fraction expansion of (9 + sqrt(165))/14 is A093148.

Examples

			(9 + sqrt(165))/14 = 1.56037375561893778715...
		

Crossrefs

Cf. A178592 (decimal expansion of sqrt(165)), A093148 (repeat 1, 1, 1, 3).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (9+Sqrt(165))/14; // G. C. Greubel, Jan 30 2019
    
  • Mathematica
    RealDigits[(9+Sqrt[165])/14, 10, 100][[1]] (* G. C. Greubel, Jan 30 2019 *)
  • PARI
    default(realprecision, 100); (9+sqrt(165))/14 \\ G. C. Greubel, Jan 30 2019
    
  • Sage
    numerical_approx((9+sqrt(165))/14, digits=100) # G. C. Greubel, Jan 30 2019

A106740 Triangle read by rows: greatest common divisors of pairs of Fibonacci numbers greater than 1: T(n, k) = gcd(Fibonacci(n), Fibonacci(k)).

Original entry on oeis.org

2, 1, 3, 1, 1, 5, 2, 1, 1, 8, 1, 1, 1, 1, 13, 1, 3, 1, 1, 1, 21, 2, 1, 1, 2, 1, 1, 34, 1, 1, 5, 1, 1, 1, 1, 55, 1, 1, 1, 1, 1, 1, 1, 1, 89, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 377, 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 610
Offset: 3

Views

Author

Reinhard Zumkeller, May 15 2005

Keywords

Examples

			Triangle begins as:
  2;
  1, 3;
  1, 1, 5;
  2, 1, 1, 8;
  1, 1, 1, 1, 13;
  1, 3, 1, 1,  1, 21;
  2, 1, 1, 2,  1,  1, 34;
  1, 1, 5, 1,  1,  1,  1, 55;
  1, 1, 1, 1,  1,  1,  1,  1, 89;
  2, 3, 1, 8,  1,  3,  2,  1,  1, 144;
  1, 1, 1, 1,  1,  1,  1,  1,  1,   1, 233;
  1, 1, 1, 1, 13,  1,  1,  1,  1,   1,   1, 377;
  2, 1, 5, 2,  1,  1,  2,  5,  1,   2,   1,   1, 610;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= GCD[Fibonacci[n], Fibonacci[k]];
    Table[T[n, k], {n,3,18}, {k,3,n}]//Flatten (* G. C. Greubel, Sep 11 2021 *)
  • Sage
    def T(n,k): return gcd(fibonacci(n), fibonacci(k))
    flatten([[T(n,k) for k in (3..n)] for n in (3..18)]) # G. C. Greubel, Sep 11 2021

Formula

T(n, k) = gcd(A000045(n), A000045(k)) for n >= 3 and 3 <= k <= n.
T(n, 3) = abs(A061347(n)).
T(n, 4) = A093148(n-1).
T(n, n) = A000045(n).
From G. C. Greubel, Sep 11 2021: (Start)
T(n, 3) = A131534(n-2).
T(n, 5) = A060904(n).
T(n, 6) = A010125(n).
T(n, n-1) = T(n, n-2) = A000012(n).
T(n, n-3) = A093148(n-5).
T(n, n-4) = A093148(n-5).
T(n, n-5) = A060904(n-5).
T(n, n-6) = A010125(n-6). (End)

A179041 Partial sums of ceiling(Fibonacci(n)/3).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 14, 21, 33, 52, 82, 130, 208, 334, 538, 867, 1400, 2262, 3656, 5911, 9560, 15464, 25017, 40473, 65482, 105947, 171420, 277357, 448767, 726114, 1174871, 1900974, 3075834, 4976797, 8052619
Offset: 0

Views

Author

Mircea Merca, Jan 04 2011

Keywords

Examples

			a(9) = 0 + 1 + 1 + 1 + 1 + 2 + 3 + 5 + 7 + 12 = 33.
		

Programs

  • Maple
    A179041 := proc(n) add( ceil(combinat[fibonacci](i)/3),i=0..n) ; end proc:

Formula

a(n) = round(Fibonacci(n+2)/3 + 3*n/8 - 1/24).
a(n) = floor(Fibonacci(n+2)/3 + 3*n/8 + 1/4).
a(n) = ceiling(Fibonacci(n+2)/3 + 3*n/8 - 1/3).
a(n) = a(n-8) + Fibonacci(n-1) + Fibonacci(n-3) + 3, n > 7.
a(n) = 2*a(n-1) - a(n-3) + a(n-8) - 2*a(n-9) + a(n-11), n > 10.
G.f.: (x^9 + x^8 + x^4 + x^3 - x)/((x+1)*(x^2+1)*(x^2+x-1)*(x-1)^2*(x^4+1)).
a(n) = -1/16 + 3*n/8 - (-1)^n/16 + Fibonacci(n+2)/3 - A057077(n)/8 + (-1)^floor((n-1)/4)*A093148(n+1)/12. - R. J. Mathar, Jan 08 2011

A293990 a(n) = (3*n + ((n-2) mod 4))/2.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 21, 23, 25, 27, 27, 29, 31, 33, 33, 35, 37, 39, 39, 41, 43, 45, 45, 47, 49, 51, 51, 53, 55, 57, 57, 59, 61, 63, 63, 65, 67, 69, 69, 71, 73, 75, 75, 77, 79, 81, 81, 83, 85, 87, 87, 89, 91, 93, 93
Offset: 0

Views

Author

Dimitris Valianatos, Oct 21 2017

Keywords

Comments

The product (2/3) * (4/3) * (6/5) * (6/7) * (8/9) * (10/9) * (12/11) * (12/13) * ... = Pi/(2*sqrt(3)). The denominators are a(n) for n >= 1 and numerators are a(n-1) + A093148(n) for n >= 1 -> [2, 4, 6, 6, 8, 10, 12, 12, ...].
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (2/1) * (2/1) * (2/3) * (4/3) * (4/5) * (4/5) * (6/5) * (6/7) * ... = Pi*sqrt(3)/2 = 2.72069904635132677...
The odd numbers of partial sums this sequence, are identified with the A003215 sequence. Also the prime numbers that appear in partial sums in this sequence, are identified with the A002407 sequence.

Crossrefs

Programs

  • Magma
    [(3*n+((n-2) mod 4))/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 29 2017
  • Maple
    A293990:=n->(3*n+((n-2) mod 4))/2: seq(A293990(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[(3*n + Mod[(n - 2), 4])/2, {n, 0, 100}] (* Wesley Ivan Hurt, Oct 29 2017 *)
    f[n_] := (3n + Mod[n - 2, 4])/2; Array[f, 65, 0] (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 3, 5, 7}, 65] (* or *)
    CoefficientList[ Series[(x^4 + 2x^3 + 2x + 1)/((x - 1)^2 (x^3 + x^2 + x + 1)), {x, 0, 64}], x] (* Robert G. Wilson v, Nov 28 2017 *)
  • PARI
    a(n) = (3*n + (n-2)%4) / 2
    
  • PARI
    Vec(x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^30)) \\ Colin Barker, Oct 21 2017
    
  • PARI
    first(n) = my(start=[1,3,3,5,7,9,9,11]); if(n<=8, return(start)); my(res=vector(n)); for (i=1, 8, res[i] = start[i]); for(i = 1, n-8 ,res[i+8] = res[i] + 12); res \\ David A. Corneth, Oct 21 2017
    

Formula

Sum_{n>=0} 1/a(n)^2 = 5*Pi^2/36 = 1.3707783890401886970... = 10*A086729.
(a(n) - n) * (-1)^(n+1) = A134967(n) for n >= 0.
a(n) - n = A162330(n) for n >= 0.
a(n) - n = A285869(n+1) for n >= 0.
a(n) + a(n+1) = A157932(n+2) for n >= 0.
a(n) + (2*n+1) = A047298(n+1) for n >= 0.
From Colin Barker, Oct 21 2017: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
(End)
a(n + 8) = a(n) + 12. - David A. Corneth, Oct 21 2017
a(4*k+4) * a(4*k+3) - a(4*k+2) * a(4*k+1) = 2*A063305(k+3) for k >= 0.
Sum_{n>=0} 1/(a(n) + a(n+2))^2 = (4*Pi^2 - 27) / 108 = (A214549 - 1) / 4.
Showing 1-7 of 7 results.