A178632 a(n) = 45*((10^n - 1)/9)^2.
45, 5445, 554445, 55544445, 5555444445, 555554444445, 55555544444445, 5555555444444445, 555555554444444445, 55555555544444444445, 5555555555444444444445, 555555555554444444444445, 55555555555544444444444445, 5555555555555444444444444445, 555555555555554444444444444445
Offset: 1
Examples
n=1: ..................... 45 = 9 * 5; n=2: ................... 5445 = 99 * 55; n=3: ................. 554445 = 999 * 555; n=4: ............... 55544445 = 9999 * 5555; n=5: ............. 5555444445 = 99999 * 55555; n=6: ........... 555554444445 = 999999 * 555555; n=7: ......... 55555544444445 = 9999999 * 5555555; n=8: ....... 5555555444444445 = 99999999 * 55555555; n=9: ..... 555555554444444445 = 999999999 * 555555555.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Magma
[45*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
-
Mathematica
45 (FromDigits/@Table[PadRight[{}, n, 1], {n, 20}])^2 (* Vincenzo Librandi, Mar 20 2014 *) LinearRecurrence[{111,-1110,1000},{45,5445,554445},20] (* Harvey P. Dale, Jan 23 2019 *)
-
Maxima
A178632(n):=45*((10^n-1)/9)^2$ makelist(A178632(n),n,1,12); /* Martin Ettl, Nov 08 2012 */
-
PARI
a(n)=45*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
Formula
G.f.: 45*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 5*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)