cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178649 a(n) = product of nonsquarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 32, 9, 1, 1, 48, 1, 1, 1, 512, 1, 162, 1, 80, 1, 1, 1, 9216, 25, 1, 243, 112, 1, 1, 1, 16384, 1, 1, 1, 279936, 1, 1, 1, 25600, 1, 1, 1, 176, 405, 1, 1, 7077888, 49, 1250, 1, 208
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Examples

			For n = 16, set of such divisors is {4, 8, 16}; a(16) = 4*8*16 = 512.
		

Crossrefs

Programs

  • Haskell
    a178649 n = div (a007955 n) (a078599 n)
    -- Reinhard Zumkeller, Feb 06 2012
    
  • Mathematica
    Table[Times@@Select[Divisors[n],!SquareFreeQ[#]&],{n,60}] (* Harvey P. Dale, Nov 04 2020 *)
    a[n_] := n^(DivisorSigma[0, n]/2) / (Times @@ FactorInteger[n][[;;,1]])^(2^(PrimeNu[n]-1)); Array[a, 100] (* Amiram Eldar, Jul 06 2022 *)
  • PARI
    a(n) = my(p=1); fordiv(n, d, if (!issquarefree(d), p*=d)); p; \\ Michel Marcus, Jul 06 2022

Formula

a(n) = A007955(n) / A078599(n) = A007955(n) / A007955(A007947(n)).
a(1) = 1, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = p^(1/2*k*(k+1)-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.