cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A206527 3^n concatenated with itself.

Original entry on oeis.org

11, 33, 99, 2727, 8181, 243243, 729729, 21872187, 65616561, 1968319683, 5904959049, 177147177147, 531441531441, 15943231594323, 47829694782969, 1434890714348907, 4304672143046721, 129140163129140163, 387420489387420489
Offset: 0

Views

Author

Vincenzo Librandi, Mar 14 2012

Keywords

Examples

			a(1)=33 because 3^1 concatenated with 3^1 is 33.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(3^n) cat Intseq(3^n)): n in [0..18]]; // Bruno Berselli, Mar 14 2012
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[3^n], IntegerDigits[3^n]]], {n, 0, 18}] (* Bruno Berselli, Mar 14 2012 *)
    Table[3^n 10^IntegerLength[3^n]+3^n,{n,0,20}] (* Harvey P. Dale, May 27 2019 *)

Formula

a(n) = A020338(3^n). - Bruno Berselli, Mar 14 2012

A206528 5^n concatenated with itself.

Original entry on oeis.org

11, 55, 2525, 125125, 625625, 31253125, 1562515625, 7812578125, 390625390625, 19531251953125, 97656259765625, 4882812548828125, 244140625244140625, 12207031251220703125, 61035156256103515625, 3051757812530517578125, 152587890625152587890625
Offset: 0

Views

Author

Vincenzo Librandi, Mar 17 2012

Keywords

Examples

			a(1)=55 because 5^1 concatenated with 5^1 is 55.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(5^n) cat Intseq(5^n)): n in [0..20]];
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[5^n],IntegerDigits[5^n]]],{n,0,20}]

Formula

a(n) = A020338(5^n).

A381259 Numbers obtained by concatenating powers of 2, sorted into increasing order.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 16, 18, 21, 22, 24, 28, 32, 41, 42, 44, 48, 64, 81, 82, 84, 88, 111, 112, 114, 116, 118, 121, 122, 124, 128, 132, 141, 142, 144, 148, 161, 162, 164, 168, 181, 182, 184, 188, 211, 212, 214, 216, 218, 221, 222, 224, 228, 232, 241, 242, 244, 248, 256, 264
Offset: 1

Views

Author

Stefano Spezia, Feb 18 2025

Keywords

Comments

Take the list {2^i: i >= 0} and concatenate its terms (allowing multiple copies) in any order; then sort the result into increasing order.
The term a(32) = 128 is a power of 2 as well as the concatenation of several powers of 2. - Rémy Sigrist, Feb 20 2025

Examples

			11 is a term because it is the concatenation of 1 = 2^0 with itself;
12 is a term because it is the concatenation of 1 = 2^0 with 2 = 2^1;
32 is a term because it is equal to 2^5;
168 is a term because it is the concatenation of 16 = 2^4 with 8 = 2^3.
0 is not a term because it is not a power of 2.
		

Crossrefs

Supersequence of A028846.
Some subsequences: A000079, A045507, A178664.
Cf. A152242.

Programs

  • PARI
    \\ See Links section.

A206529 7^n concatenated with itself.

Original entry on oeis.org

11, 77, 4949, 343343, 24012401, 1680716807, 117649117649, 823543823543, 57648015764801, 4035360740353607, 282475249282475249, 19773267431977326743, 1384128720113841287201, 9688901040796889010407, 678223072849678223072849
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2012

Keywords

Examples

			a(1)=77 because 7^1 concatenated with 7^1 is 77.
		

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(7^n) cat Intseq(7^n)): n in [0..20]];
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[7^n],IntegerDigits[7^n]]],{n,0,20}]
    #*10^IntegerLength[#]+#&/@(7^Range[0,20]) (* Harvey P. Dale, Jul 19 2022 *)

Formula

a(n) = A020338(7^n).
Showing 1-4 of 4 results.