cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A348129 Number T(n,k) of ways to place k nonattacking queens on an n X n board; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 1, 9, 8, 0, 1, 16, 44, 24, 2, 1, 25, 140, 204, 82, 10, 1, 36, 340, 1024, 982, 248, 4, 1, 49, 700, 3628, 7002, 4618, 832, 40, 1, 64, 1288, 10320, 34568, 46736, 22708, 3192, 92, 1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352, 1, 100, 3480, 54400, 412596, 1535440, 2716096, 2119176, 636524, 56832, 724
Offset: 0

Views

Author

Alois P. Heinz, Oct 01 2021

Keywords

Examples

			T(3,2) = 8:
  .-----. .-----. .-----. .-----. .-----. .-----. .-----. .-----.
  |Q . .| |Q . .| |. . Q| |. . Q| |. . .| |. Q .| |. Q .| |. . .|
  |. . Q| |. . .| |. . .| |Q . .| |Q . .| |. . .| |. . .| |. . Q|
  |. . .| |. Q .| |. Q .| |. . .| |. . Q| |. . Q| |Q . .| |Q . .|
  `-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´.
Triangle T(n,k) begins:
  1;
  1,  1;
  1,  4,    0;
  1,  9,    8,     0;
  1, 16,   44,    24,      2;
  1, 25,  140,   204,     82,     10;
  1, 36,  340,  1024,    982,    248,      4;
  1, 49,  700,  3628,   7002,   4618,    832,     40;
  1, 64, 1288, 10320,  34568,  46736,  22708,   3192,    92;
  1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352;
  ...
		

Crossrefs

Main diagonal gives A000170.
Row sums give A287227.
T(2n,n) gives A348130.

A178721 Number of ways to place 7 nonattacking queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 40, 3192, 119180, 2119176, 23636352, 186506000, 1131544008, 5613017128, 23670094984, 87463182432, 289367715488, 872345119896, 2427609997716, 6305272324272
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 07 2010

Keywords

Crossrefs

Programs

  • Mathematica
    (* General formulas (denominator and recurrence) for k nonattacking queens on an n X n board: *) inversef[j_]:=(m=2;While[j>Fibonacci[m],m=m+1];m); denom[k_]:=(x-1)^(2k+1)*Product[Cyclotomic[j,x]^(2*(k-inversef[j]+1)),{j,2,Fibonacci[k]}]; Table[denom[k],{k,1,7}]//TraditionalForm Table[Sum[Coefficient[Expand[denom[k]],x,i]*Subscript[a,n-i],{i,0,Exponent[denom[k],x]}],{k,1,7}]//TraditionalForm

Formula

Denominator of G.f.: (x-1)^15*(x+1)^10*(x^2+x+1)^8*(x^2+1)^6*(x^4+x^3+x^2+x+1)^6*(x^2-x+1)^4*(x^6+x^5+x^4+x^3+x^2+x+1)^4*(x^4+1)^4*(x^6+x^3+1)^2*(x^4-x^3+x^2-x+1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)^2*(x^4-x^2+1)^2*(x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)^2.
Recurrence: a(n) = a(n-197) + 11a(n-196) + 66a(n-195) + 284a(n-194) + 979a(n-193) + 2867a(n-192) + 7391a(n-191) + 17167a(n-190) + 36502a(n-189) + 71854a(n-188) + 132001a(n-187) + 227579a(n-186) + 369573a(n-185) + 566345a(n-184) + 818910a(n-183) + 1114468a(n-182) + 1418684a(n-181) + 1667858a(n-180) + 1762862a(n-179) + 1567406a(n-178) + 913631a(n-177) - 382005a(n-176) - 2490306a(n-175) - 5527702a(n-174) - 9503162a(n-173) - 14258598a(n-172) - 19411273a(n-171) - 24310113a(n-170) - 28020291a(n-169) - 29351159a(n-168) - 26940769a(n-167) - 19405263a(n-166) - 5553140a(n-165) + 15346812a(n-164) + 43268288a(n-163) + 77138720a(n-162) + 114608227a(n-161) + 151932369a(n-160) + 184024666a(n-159) + 204725598a(n-158) + 207315406a(n-157) + 185268748a(n-156) + 133212155a(n-155) + 48004017a(n-154) - 70183102a(n-153) - 216930246a(n-152) - 382960078a(n-151) - 554012366a(n-150) - 711346353a(n-149) - 832955143a(n-148) - 895498622a(n-147) - 876864666a(n-146) - 759163548a(n-145) - 531860790a(n-144) - 194674273a(n-143) + 240182841a(n-142) + 746828188a(n-141) + 1285960424a(n-140) + 1806771216a(n-139) + 2250587298a(n-138) + 2556103772a(n-137) + 2665846492a(n-136) + 2533288725a(n-135) + 2129874995a(n-134) + 1451101463a(n-133) + 520790749a(n-132) - 607206046a(n-131) - 1850443990a(n-130) - 3102719461a(n-129) - 4242198625a(n-128) - 5142328327a(n-127) - 5684628585a(n-126) - 5772140029a(n-125) - 5342085203a(n-124) - 4376237801a(n-123) - 2907601789a(n-122) - 1022286568a(n-121) + 1144093134a(n-120) + 3415602536a(n-119) + 5590244180a(n-118) + 7458159648a(n-117) + 8822115392a(n-116) + 9518231826a(n-115) + 9434741790a(n-114) + 8526633540a(n-113) + 6824351658a(n-112) + 4435274433a(n-111) + 1537407289a(n-110) - 1634445881a(n-109) - 4808938651a(n-108) - 7703022656a(n- 107) - 10048957558a(n-106) - 11620750186a(n-105) - 12257251526a(n-104) - 11879415820a(n-103) - 10499785534a(n-102) - 8223052813a(n-101) - 5237477687a(n-100) - 1797913038a(n-99) + 1797913038a(n-98) + 5237477687a(n-97) + 8223052813a(n-96) + 10499785534a(n-95) + 11879415820a(n-94) + 12257251526a(n-93) + 11620750186a(n-92) + 10048957558a(n-91) + 7703022656a(n-90) + 4808938651a(n-89) + 1634445881a(n-88) - 1537407289a(n-87) - 4435274433a(n-86) - 6824351658a(n-85) - 8526633540a(n-84) - 9434741790a(n-83) - 9518231826a(n-82) - 8822115392a(n-81) - 7458159648a(n-80) - 5590244180a(n-79) - 3415602536a(n-78) - 1144093134a(n-77) + 1022286568a(n-76) + 2907601789a(n-75) + 4376237801a(n-74) + 5342085203a(n-73) + 5772140029a(n-72) + 5684628585a(n-71) + 5142328327a(n-70) + 4242198625a(n-69) + 3102719461a(n-68) + 1850443990a(n-67) + 607206046a(n-66) - 520790749a(n-65) - 1451101463a(n-64) - 2129874995a(n-63) - 2533288725a(n-62) - 2665846492a(n-61) - 2556103772a(n-60) - 2250587298a(n-59) - 1806771216a(n-58) - 1285960424a(n-57) - 746828188a(n-56) - 240182841a(n-55) + 194674273a(n-54) + 531860790a(n-53) + 759163548a(n-52) + 876864666a(n-51) + 895498622a(n-50) + 832955143a(n-49) + 711346353a(n-48) + 554012366a(n-47) + 382960078a(n-46) + 216930246a(n-45) + 70183102a(n-44) - 48004017a(n-43) - 133212155a(n-42) - 185268748a(n-41) - 207315406a(n-40) - 204725598a(n-39) - 184024666a(n-38) - 151932369a(n-37) - 114608227a(n-36) - 77138720a(n-35) - 43268288a(n-34) - 15346812a(n-33) + 5553140a(n-32) + 19405263a(n-31) + 26940769a(n-30) + 29351159a(n-29) + 28020291a(n-28) + 24310113a(n-27) + 19411273a(n-26) + 14258598a(n-25) + 9503162a(n-24) + 5527702a(n-23) + 2490306a(n-22) + 382005a(n-21) - 913631a(n-20) - 1567406a(n-19) - 1762862a(n-18) - 1667858a(n-17) - 1418684a(n-16) - 1114468a(n-15) - 818910a(n-14) - 566345a(n-13) - 369573a(n-12) - 227579a(n-11) - 132001a(n-10) - 71854a(n-9) - 36502a(n-8) - 17167a(n-7) - 7391a(n-6) - 2867a(n-5) - 979a(n-4) - 284a(n-3) - 66a(n-2) - 11a(n-1).

Extensions

a(19)-a(20) from Vaclav Kotesovec, Jun 16 2010

A180402 a(n) = lcm(1,...,Fibonacci(n)).

Original entry on oeis.org

1, 1, 2, 6, 60, 840, 360360, 232792560, 144403552893600, 164249358725037825439200, 718766754945489455304472257065075294400, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2010

Keywords

Comments

Also least period for number of ways of placing k non-attacking queens on an n X n chessboard. [conjectured by Kotesovec; proved for n <= 5. - Thomas Zaslavsky, Jun 24 2018]

Crossrefs

Programs

  • Maple
    a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1,2]):
    seq(a(n), n=1..14);  # Alois P. Heinz, Aug 12 2017
  • Mathematica
    Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
    Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
  • PARI
    a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018

Extensions

a(11) onwards from Robert G. Wilson v, Sep 05 2010

A178720 Degree of denominator of GF for number of ways to place k nonattacking queens on an n X n toroidal board.

Original entry on oeis.org

3, 8, 12, 28, 58, 142, 350, 906, 2320, 6056, 15778, 41024, 107132, 280184, 732998, 1918354, 5019810, 13141378, 34398686, 90045424, 235729374, 617126438, 1615633560, 4229774958, 11073514332, 28990794770, 75898640094, 198704554772
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 07 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[k > 1, 4*k + Sum[ Sum[(2*j + 1)*EulerPhi[i], {i, 2*Fibonacci[k - j - 1] + 1, 2*Fibonacci[k - j]}], {j, 1, k - 2}], 3], {k, 1, 20}]

Formula

Explicit formula (Vaclav Kotesovec, Jun 05 2010), for k>2 : t(k) = 4*k+Sum[Sum[(2*j+1)*EulerPhi[i],{i,2*Fibonacci[k-j-1]+1,2*Fibonacci[k-j]}],{j,1,k-2}], Asymptotic formula: t(k) ~ 12/(5*Pi^2)*((1+Sqrt[5])/2)^(2*k+1) or t(k) ~ 6*(1+Sqrt[5])/Pi^2*Fibonacci[k]^2
Showing 1-4 of 4 results.