A348129
Number T(n,k) of ways to place k nonattacking queens on an n X n board; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 0, 1, 9, 8, 0, 1, 16, 44, 24, 2, 1, 25, 140, 204, 82, 10, 1, 36, 340, 1024, 982, 248, 4, 1, 49, 700, 3628, 7002, 4618, 832, 40, 1, 64, 1288, 10320, 34568, 46736, 22708, 3192, 92, 1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352, 1, 100, 3480, 54400, 412596, 1535440, 2716096, 2119176, 636524, 56832, 724
Offset: 0
T(3,2) = 8:
.-----. .-----. .-----. .-----. .-----. .-----. .-----. .-----.
|Q . .| |Q . .| |. . Q| |. . Q| |. . .| |. Q .| |. Q .| |. . .|
|. . Q| |. . .| |. . .| |Q . .| |Q . .| |. . .| |. . .| |. . Q|
|. . .| |. Q .| |. Q .| |. . .| |. . Q| |. . Q| |Q . .| |Q . .|
`-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´.
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 0;
1, 9, 8, 0;
1, 16, 44, 24, 2;
1, 25, 140, 204, 82, 10;
1, 36, 340, 1024, 982, 248, 4;
1, 49, 700, 3628, 7002, 4618, 832, 40;
1, 64, 1288, 10320, 34568, 46736, 22708, 3192, 92;
1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352;
...
A178721
Number of ways to place 7 nonattacking queens on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 40, 3192, 119180, 2119176, 23636352, 186506000, 1131544008, 5613017128, 23670094984, 87463182432, 289367715488, 872345119896, 2427609997716, 6305272324272
Offset: 1
- S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-Queens Problem, I. General theory, Jan 26 2013, updated Feb 21 2014
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013
- Index entries for linear recurrences with constant coefficients, order 197.
-
(* General formulas (denominator and recurrence) for k nonattacking queens on an n X n board: *) inversef[j_]:=(m=2;While[j>Fibonacci[m],m=m+1];m); denom[k_]:=(x-1)^(2k+1)*Product[Cyclotomic[j,x]^(2*(k-inversef[j]+1)),{j,2,Fibonacci[k]}]; Table[denom[k],{k,1,7}]//TraditionalForm Table[Sum[Coefficient[Expand[denom[k]],x,i]*Subscript[a,n-i],{i,0,Exponent[denom[k],x]}],{k,1,7}]//TraditionalForm
A180402
a(n) = lcm(1,...,Fibonacci(n)).
Original entry on oeis.org
1, 1, 2, 6, 60, 840, 360360, 232792560, 144403552893600, 164249358725037825439200, 718766754945489455304472257065075294400, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..17
- Christopher R. H. Hanusa, T. Zaslavsky, S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016. See Table 8.1.
- V. Kotesovec, Non-attacking chess pieces, 6ed, p.31, 2013
-
a:= n-> ilcm($1..(<<0|1>, <1|1>>^n)[1,2]):
seq(a(n), n=1..14); # Alois P. Heinz, Aug 12 2017
-
Table[Apply[LCM, Range[Fibonacci[k]]], {k, 1, 10}]
Array[LCM @@ Range@Fibonacci@# &, 12] (* Robert G. Wilson v, Sep 05 2010 *)
-
a(n) = lcm([1..fibonacci(n)]); \\ Michel Marcus, Jun 24 2018
A178720
Degree of denominator of GF for number of ways to place k nonattacking queens on an n X n toroidal board.
Original entry on oeis.org
3, 8, 12, 28, 58, 142, 350, 906, 2320, 6056, 15778, 41024, 107132, 280184, 732998, 1918354, 5019810, 13141378, 34398686, 90045424, 235729374, 617126438, 1615633560, 4229774958, 11073514332, 28990794770, 75898640094, 198704554772
Offset: 1
-
Table[If[k > 1, 4*k + Sum[ Sum[(2*j + 1)*EulerPhi[i], {i, 2*Fibonacci[k - j - 1] + 1, 2*Fibonacci[k - j]}], {j, 1, k - 2}], 3], {k, 1, 20}]
Showing 1-4 of 4 results.
Comments