A178789 a(n) = 4^(n-1) + 2: Number of acute angles after n iterations of the Koch snowflake construction.
3, 6, 18, 66, 258, 1026, 4098, 16386, 65538, 262146, 1048578, 4194306, 16777218, 67108866, 268435458, 1073741826, 4294967298, 17179869186, 68719476738, 274877906946, 1099511627778, 4398046511106, 17592186044418, 70368744177666
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 113.
- Larry Riddle, Koch Curve.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Programs
-
Magma
[2^(2*(n-1)) + 2: n in [1..30]]; // Vincenzo Librandi, Feb 02 2013
-
Maple
A178789:=n->2+4^(n-1); seq(A178789(n), n=1..30); # Wesley Ivan Hurt, Dec 17 2013
-
Mathematica
a=b=3;lst={a};Do[a=a+b;b*=4;AppendTo[lst,a],{n,40}];lst Flatten[Table[2^(2*(n-1)) + 2, {n, 1, 50}]](* or *) CoefficientList[Series[(3 - 9*x)/(1 - 5*x + 4*x^2),{x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
-
PARI
A178789=n->4^(n-1)+2 \\ - M. F. Hasler, Dec 17 2013
Formula
G.f.: 3*x*(1 - 3*x)/(1 - 5*x + 4*x^2).
a(n) = 3 * A047849(n-1).
a(n) = 2^(2*(n-1)) + 2. - Vincenzo Librandi, Feb 02 2013
a(n+1) = a(n) + 3*4^(n-1) = a(n) + A002001(n) for n > 0. - M. F. Hasler, Dec 17 2013
a(n) = 2 + A000302(n-1). - Omar E. Pol, Dec 18 2013
Comments