A024036
a(n) = 4^n - 1.
Original entry on oeis.org
0, 3, 15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303, 16777215, 67108863, 268435455, 1073741823, 4294967295, 17179869183, 68719476735, 274877906943, 1099511627775, 4398046511103, 17592186044415, 70368744177663, 281474976710655
Offset: 0
G.f. = 3*x + 15*x^2 + 63*x^3 + 255*x^4 + 1023*x^5 + 4095*x^6 + ...
- Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Felix Fröhlich, Table of n, a(n) for n = 0..99
- Alexander V. Kitaev, Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin, Symmetry, Integrability and Geometry: Methods and Applications, Vol. 15 (2019), 046, 53 pages; arXiv preprint, arXiv:1809.00122 [math.CA], 2018-2019.
- Eric Weisstein's World of Mathematics, Cyclomatic Number.
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Cf.
A000051,
A000120,
A000225,
A000302,
A002001,
A002063,
A002193,
A002450,
A005057,
A010503,
A010532,
A010541,
A010767,
A015521,
A020988,
A027637 (partial products),
A078904 (partial sums),
A079978,
A080674,
A164346 (first differences),
A178789,
A179857,
A248721.
-
a024036 = (subtract 1) . a000302
a024036_list = iterate ((+ 3) . (* 4)) 0
-- Reinhard Zumkeller, Oct 03 2012
-
A024036:=n->4^n-1; seq(A024036(n), n=0..30); # Wesley Ivan Hurt, Apr 04 2014
-
Array[4^# - 1 &, 50, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
(* Start from Eric W. Weisstein, Sep 19 2017 *)
Table[4^n - 1, {n, 0, 20}]
4^Range[0, 20] - 1
LinearRecurrence[{5, -4}, {0, 3}, 20]
CoefficientList[Series[3 x/(1 - 5 x + 4 x^2), {x, 0, 20}], x]
(* End *)
-
for(n=0, 100, print1(4^n-1, ", ")) \\ Felix Fröhlich, Jul 04 2014
-
[gaussian_binomial(2*n,1, 2) for n in range(21)] # Zerinvary Lajos, May 28 2009
-
[stirling_number2(2*n+1, 2) for n in range(21)] # Zerinvary Lajos, Nov 26 2009
A002001
a(n) = 3*4^(n-1), n>0; a(0)=1.
Original entry on oeis.org
1, 3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 456.
- P. Kernan, Koch Snowflake. [Broken link]
- C. Lanius, The Koch Snowflake.
- Eric Weisstein's World of Mathematics, Koch Snowflake.
- Wikipedia, Koch snowflake.
- Index to divisibility sequences.
- Index entries for linear recurrences with constant coefficients, signature (4).
-
[ (3*4^n+0^n)/4: n in [0..22] ]; // Klaus Brockhaus, Aug 15 2009
-
A002001:=n->ceil(3*4^(n-1)); seq(A002001(n), n=0..30); # Wesley Ivan Hurt, Dec 17 2013
-
Table[Ceiling[3*4^(n - 1)], {n, 0, 30}] (* Wesley Ivan Hurt, May 26 2014 *)
-
v=vector(100,n,3*4^(n-2));v[1]=1;v \\ Charles R Greathouse IV, May 19 2011
-
A002001=n->if(n,3*4^(n-1),1) \\ M. F. Hasler, Dec 17 2013
A047849
a(n) = (4^n + 2)/3.
Original entry on oeis.org
1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 349526, 1398102, 5592406, 22369622, 89478486, 357913942, 1431655766, 5726623062, 22906492246, 91625968982, 366503875926, 1466015503702, 5864062014806, 23456248059222, 93824992236886, 375299968947542
Offset: 0
a(2) = 6 for the number of round trips in C_6 from the six round trips from, say, vertex no. 1: 12121, 16161, 12161, 16121, 12321 and 16561. - _Wolfdieter Lang_, Nov 08 2011
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Jeffrey M. Barnes, Georgia Benkart, and Tom Halverson, McKay centralizer algebras. Proc. Lond. Math. Soc. (3) 112, No. 2, 375-414 (2016).
- Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
- Georgia Benkart and Tom Halverson, McKay Centralizer Algebras, hal-02173744 [math.CO], 2020.
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 37-51.
- Pascal Caron, Jean-Gabriel Luque, and Bruno Patrou, A combinatorial approach for the state complexity of the Shuffle product, arXiv:1905.08120 [cs.FL], 2019.
- Gi-Sang Cheon, Ji-Hwan Jung, Sergey Kitaev, and Seyed Ahmad Mojallal, Riordan graphs I: structural properties, Linear Algebra and its Applications, 579. pp. 89-135, Prop. 2.8. (2019).
- B. N. Cooperstein and E. E. Shult, A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 37-48. See Conjecture 5.5.
- Kittitat Iamthong, Ji-Hwan Jung, and Sergey Kitaev, Encoding labelled p-Riordan graphs by words and pattern-avoiding permutations, arXiv:2009.01410 [math.CO], 2020.
- D. Kremer and W. C. Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Mathematics 268 (2003), 171-183.
- T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, arXiv:math/0204005 [math.CO], 2002.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Cf.
A000302,
A001045,
A002450,
A007583,
A024493,
A047848,
A078008,
A121314,
A131708,
A178789,
A199571.
-
[(4^n+2)/3: n in [0..30]]; // Vincenzo Librandi, Dec 07 2015
-
(4^Range[0,30] +2)/3 (* or *) LinearRecurrence[{5,-4},{1,2},30] (* Harvey P. Dale, Nov 27 2015 *)
-
a(n)=(4^n+2)/3;
-
def A047849(n): return (pow(4, n) +2)//3
print([A047849(n) for n in range(41)]) # G. C. Greubel, Jan 17 2025
-
def A047849(n): return ((1 << (2 * n)) + 2) // 3 # John Reimer Morales, Aug 05 2025
A335545
A(n,k) is the sum of the k-th powers of the (positive) number of permutations of [n] with j descents (j=0..max(0,n-1)); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 6, 4, 1, 1, 2, 18, 24, 5, 1, 1, 2, 66, 244, 120, 6, 1, 1, 2, 258, 2664, 5710, 720, 7, 1, 1, 2, 1026, 29284, 322650, 188908, 5040, 8, 1, 1, 2, 4098, 322104, 19888690, 55457604, 8702820, 40320, 9, 1, 1, 2, 16386, 3543124, 1276095330, 16657451236, 17484605040, 524888040, 362880, 10
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
3, 6, 18, 66, 258, 1026, ...
4, 24, 244, 2664, 29284, 322104, ...
5, 120, 5710, 322650, 19888690, 1276095330, ...
6, 720, 188908, 55457604, 16657451236, 5025377832180, ...
...
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
expand(add(b(u-j, o+j-1, 1)*x^t, j=1..u))+
add(b(u+j-1, o-j, 1), j=1..o))
end:
A:= (n, k)-> (p-> add(coeff(p, x, i)^k, i=0..degree(p)))(b(n, 0$2)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
A:= (n, k)-> add(combinat[eulerian1](n, j)^k, j=0..max(0, n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
B[n_, k_] := B[n, k] = Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
A[0, ] = 1; A[n, k_] := Sum[B[n, j]^k, {j, 0, n-1}];
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 11 2021 *)
A281699
Sierpinski stellated octahedron numbers: a(n) = 2*(-3*2^(n+1) + 2^(2n+3) + 5).
Original entry on oeis.org
14, 50, 218, 938, 3914, 16010, 64778, 260618, 1045514, 4188170, 16764938, 67084298, 268386314, 1073643530, 4294770698, 17179475978, 68718690314, 274876334090, 1099508482058, 4398040219658, 17592173461514, 70368719011850, 281474926379018, 1125899806179338, 4503599426043914, 18014398106828810
Offset: 0
-
Table[8 (2^(2 n + 1) + 2) - 6 (2^(n + 1) + 1), {n, 0, 25}] (* or *)
LinearRecurrence[{7, -14, 8}, {14, 50, 218}, 26] (* or *)
CoefficientList[Series[2 (7 - 24 x + 32 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* Michael De Vlieger, Jan 28 2017 *)
-
Vec(2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 28 2017
-
a(n) = 16*4^n - 12*2^n + 10 \\ Charles R Greathouse IV, Jan 29 2017
A280293
a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [-5, 4].
Original entry on oeis.org
3, 1, 6, 7, 18, 31, 66, 127, 258, 511, 1026, 2047, 4098, 8191, 16386, 32767, 65538, 131071, 262146, 524287, 1048578, 2097151, 4194306, 8388607, 16777218, 33554431, 67108866, 134217727, 268435458, 536870911, 1073741826, 2147483647, 4294967298, 8589934591
Offset: 0
-
LinearRecurrence[{2,1,-2},{3,1,6},50] (* Paolo Xausa, Nov 13 2023 *)
-
Vec((3-5*x+x^2) / ((1-x)*(1+x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Dec 31 2016
Showing 1-6 of 6 results.
Comments