A178822 Triangle read by rows: T(n,k) = C(n+5,5) * C(n,k), 0 <= k <= n.
1, 6, 6, 21, 42, 21, 56, 168, 168, 56, 126, 504, 756, 504, 126, 252, 1260, 2520, 2520, 1260, 252, 462, 2772, 6930, 9240, 6930, 2772, 462, 792, 5544, 16632, 27720, 27720, 16632, 5544, 792, 1287, 10296, 36036, 72072, 90090, 72072, 36036, 10296, 1287
Offset: 0
Examples
Triangle begins: 1; 6, 6; 21, 42, 21; 56, 168, 168, 56; 126, 504, 756, 504, 126;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- H. J. Brothers, Pascal's prism, The Mathematical Gazette, 96 (July 2012), 213-220.
- H. J. Brothers, Pascal's Prism: Supplementary Material
Crossrefs
Programs
-
Magma
/* As triangle */ [[Binomial(n+5,5)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // Vincenzo Librandi, Oct 23 2017
-
Mathematica
Table[Multinomial[5, i-j, j], {i, 0, 9}, {j, 0, i}]//Column Table[Binomial[n + 5, 5]*Binomial[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(binomial(n+5,5)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 25 2017
Formula
T(n,k) = C(n+5,5) * C(n,k), 0 <= k <= n.
For element a_(h, i, j) in A178819: a_(6, i, j) = (i+4; 5, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^6. - Ilya Gutkovskiy, Mar 20 2020
Comments