cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178824 a(n) = Sum_{k=0..n} binomial(n,k)^4/(n+1).

Original entry on oeis.org

1, 1, 6, 41, 362, 3542, 37692, 424377, 4990722, 60704138, 758665388, 9694652838, 126203947828, 1668947978908, 22370427181624, 303383342784729, 4156846359584754, 57473870722327874, 801081711581734764, 11246487794657694810, 158920231643036635860, 2258896576436091238860
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2010

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Sum([0..n], k-> Binomial(n,k)^4/(n+1) )); # G. C. Greubel, Jan 22 2019
  • Magma
    [(&+[Binomial(n,k)^4/(n+1): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jan 22 2019
    
  • Maple
    a:=n->add(binomial(n,k)^4/(n+1),k=0..n): seq(a(n),n=0..20); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    Table[Sum[Binomial[n,k]^4/(n+1), {k,0,n}], {n,0,20}] (* G. C. Greubel, Jan 22 2019 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^4)/(n+1)}
    
  • Sage
    [sum(binomial(n,k)^4/(n+1) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jan 22 2019
    

Formula

a(n) = A005260(n)/(n+1).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) )^2. - Seiichi Manyama, Mar 26 2025
a(n) ~ 2^(4*n + 1/2) / (Pi^(3/2) * n^(5/2)). - Vaclav Kotesovec, Mar 26 2025