A178837 Indices k such that the sum of the digits of Fibonacci(k) is a prime number.
3, 4, 5, 8, 9, 11, 14, 15, 18, 22, 25, 26, 27, 29, 30, 31, 34, 39, 41, 43, 45, 47, 51, 53, 54, 58, 61, 63, 65, 66, 67, 81, 85, 87, 90, 94, 99, 105, 107, 111, 113, 118, 122, 133, 135, 139, 147, 149, 151, 161, 167, 169, 173, 187, 191, 193, 194, 195, 198, 202, 213, 223
Offset: 1
Examples
3 is in the sequence because Fibonacci(3) = 2, and 2 is prime. 113 is in the sequence because Fibonacci(113) = 184551825793033096366333 and the sum of the digits = 103 is prime.
Programs
-
Maple
with(combinat, fibonacci):nn:= 120: for n from 1 to 700 do:p:=fibonacci(n):l:=length(p):n0:=p:s:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s:=s+u:od:if type(s, prime)=true then printf(`%d, `, n): else fi:od: # second Maple program: q:= n-> isprime(add(i, i=convert(combinat[fibonacci](n), base, 10))): select(q, [$0..223])[]; # Alois P. Heinz, Jul 15 2025
-
Mathematica
Select[Range[300],PrimeQ[Total[IntegerDigits[Fibonacci[#]]]]&] (* Harvey P. Dale, Oct 22 2017 *)