cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065398 Fibonacci numbers whose digits sum to a prime.

Original entry on oeis.org

2, 3, 5, 21, 34, 89, 377, 610, 2584, 17711, 75025, 121393, 196418, 514229, 832040, 1346269, 5702887, 63245986, 165580141, 433494437, 1134903170, 2971215073, 20365011074, 53316291173, 86267571272, 591286729879, 2504730781961
Offset: 1

Views

Author

Jason Earls, Nov 22 2001

Keywords

Crossrefs

Cf. A000045, A178837 (corresponding indices).

Programs

  • Mathematica
    Select[Fibonacci[Range[100]],PrimeQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Mar 24 2017 *)
  • PARI
    { for (m=1, 10^2, my(f=fibonacci(m)); if (isprime(sumdigits(f)), print1(f, ", "))) } \\ Harry J. Smith, Oct 18 2009

Formula

a(n) = A000045(A178837(n)).

A316527 Fibonacci numbers whose sum of digits is not a prime.

Original entry on oeis.org

0, 1, 8, 13, 55, 144, 233, 987, 1597, 4181, 6765, 10946, 28657, 46368, 317811, 2178309, 3524578, 9227465, 14930352, 24157817, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 7778742049, 12586269025, 32951280099, 139583862445, 225851433717
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2018

Keywords

Crossrefs

Complement of A065398 within A000045.
Cf. A178837.

Programs

  • GAP
    S:=List(List(List([2..60],Fibonacci),ListOfDigits),Sum);;
    a:=[];; for i in [1..Length(S)] do if not IsPrime(S[i]) then Add(a,Fibonacci(i+1)); fi; od; a:=Concatenation([0],a); # Muniru A Asiru, Jul 12 2018
  • Magma
    [Fibonacci(n): n in [2..80] | not IsPrime(&+Intseq(Fibonacci(n)))];
    
  • Mathematica
    Rest[Select[Fibonacci[Range[100]], !PrimeQ[Total[IntegerDigits[#]]]&]]

A383045 Integers k for which the sum of digits of Fibonacci(k) is a Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 13, 28, 33, 49, 85, 94, 107, 286, 299, 366, 421, 422, 443, 657, 2807, 4483, 4531, 18694, 49140, 79033, 79850, 80290, 128306, 129049, 129618, 208245, 338888, 546571, 882766, 883822, 886342
Offset: 1

Views

Author

Michel Marcus, Apr 14 2025

Keywords

Examples

			Fibonacci(8) = 21 and sumdigits(21) = 3, a Fibonacci number, so 8 is a term.
		

Crossrefs

Programs

  • Maple
    q:= n-> (t-> issqr(t+4) or issqr(t-4))(5*add(i, i=convert(combinat[fibonacci](n), base, 10))^2):
    select(q, [$0..4600])[];  # Alois P. Heinz, Jul 15 2025
  • Mathematica
    fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; Select[Range[0, 1000], fibQ[DigitSum[Fibonacci[#]]] &] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(k) = isfib(sumdigits(fibonacci(k)));

Extensions

a(36)-a(39) from Amiram Eldar, Apr 14 2025
Showing 1-3 of 3 results.