A178869 a(n) = 9*a(n-1) - 10*a(n-2); a(0)=0, a(1)=1.
0, 1, 9, 71, 549, 4231, 32589, 250991, 1933029, 14887351, 114655869, 883029311, 6800705109, 52376052871, 403377424749, 3106636294031, 23925952398789, 184267208648791, 1419145353851229, 10929636098173151, 84175271345046069
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (9, -10).
Programs
-
Mathematica
Join[{a=0,b=1},Table[c=9*b-10*a+2;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *) LinearRecurrence[{9,-10},{0,1},50] (* or *) CoefficientList[Series[ -x/(-10x^2+9x-1),{x,0,50}],x] (* Harvey P. Dale, May 06 2011 *)
Formula
G.f.: -x/(-10*x^2+9*x-1).
a(n) = 9a(n-1)-10a(n-2), a(0)=0, a(1)=1. [Harvey P. Dale, May 06 2011]
a(n+1) = Sum_{k, 0<=k<=n}A206819(n,k)*(-1)^k. - Philippe Deléham, Feb 26 2013
Comments