A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A186446
Expansion of 1/(1 - 7*x + 2*x^2).
Original entry on oeis.org
1, 7, 47, 315, 2111, 14147, 94807, 635355, 4257871, 28534387, 191224967, 1281505995, 8588092031, 57553632227, 385699241527, 2584787426235, 17322113500591, 116085219651667, 777952310560487, 5213495734620075, 34938565521219551
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..800
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- Index entries for linear recurrences with constant coefficients, signature (7,-2).
For similar closed formulas:
A015446 [((1+sqrt(41))^(1+n)-(1-sqrt(41))^(1+n))/(2^(1+n)*sqrt(41))],
A015525 [((3+sqrt(41))^n-(3-sqrt(41))^n)/(2^n*sqrt(41))],
A015537 [((5+sqrt(41))^n-(5-sqrt(41))^n)/(2^n*sqrt(41))],
A178869 [((9+sqrt(41))^n-(9-sqrt(41))^n)/(2^n*sqrt(41))].
-
m:=21; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-7*x+2*x^2)));
-
I:=[1,7]; [n le 2 select I[n] else 7*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[1 / (1 - 7 x + 2 x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{7,-2},{1,7},30] (* Harvey P. Dale, Aug 06 2017 *)
-
Vec(1/(1-7*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
A206819
Riordan array (1/(1-10*x-10*x^2), x/(1-10*x-10*x^2)).
Original entry on oeis.org
1, 10, 1, 90, 20, 1, 800, 280, 30, 1, 7100, 3400, 570, 40, 1, 63000, 38300, 8800, 960, 50, 1, 559000, 412000, 120600, 18000, 1450, 60, 1, 4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Offset: 0
Triangle begins :
1
10, 1
90, 20, 1
800, 280, 30, 1
7100, 3400, 570, 40, 1
63000, 38300, 8800, 960, 50, 1
559000, 412000, 120600, 18000, 1450, 60, 1
4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Triangle (0, 10, -1, 1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 10, 1
0, 90, 20, 1
0, 800, 280, 30, 1
0, 7100, 3400, 570, 40, 1 ...
A178870
Signed Delannoy triangle convolved with 10^n.
Original entry on oeis.org
1, 10, -1, 100, -30, 1, 1000, -500, 50, -1, 10000, -7000, 1300, -70, 1, 100000, -90000, 25000, -2500, 90, -1, 1000000, -1100000, 410000, -63000, 4100, -110, 1, 10000000, -13000000, 6100000, -1290000, 129000, -6100, 130, -1
Offset: 0
Triangle begins:
1
10, -1
100, -30, 1
1000, -500, 50, -1
10000, -7000, 1300, -70, 1
100000, -90000, 25000, -2500, 90, -1
1000000, -1100000, 410000, -63000, 4100, -110, 1
10000000, -13000000, 6100000, -1290000, 129000, -6100, 130, -1
A287818
Number of nonary sequences of length n such that no two consecutive terms have distance 3.
Original entry on oeis.org
1, 9, 69, 531, 4089, 31491, 242529, 1867851, 14385369, 110789811, 853254609, 6571393371, 50609994249, 389776014531, 3001884188289, 23119197549291, 178053936060729, 1371293449053651, 10561101680875569, 81336980637343611, 626421808927336809, 4824426473972595171
Offset: 0
For n=2 the a(2) = 81 - 12 = 69 sequences contain every combination except these twelve: 03,30,14,41,25,52,36,63,47,74,58,85.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{9, -10}, {1, 9, 69}, 40]
-
def a(n):
if n in [0, 1, 2]:
return [1, 9, 69][n]
return 9*a(n-1)-10*a(n-2)
Showing 1-5 of 5 results.
Comments