A069361
Number of 3 X n binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
1, 17, 197, 1985, 18621, 167337, 1461797, 12519345, 105683341, 882516857, 7308428597, 60131384705, 492202181661, 4012347269577, 32599584662597, 264152863210065, 2135714594033581, 17236446198921497, 138901692341235797, 1117982939085627425, 8989229069675479101
Offset: 1
The 17 binary arrays for n=2:
01 10 01 10 01 10 01 10 01 10 11 11 11 11 11 11 11
01 10 01 10 11 11 11 11 11 11 01 10 01 01 11 11 11
01 10 11 11 01 10 10 01 11 11 01 10 11 11 01 10 11 - _R. J. Mathar_, Jun 21 2023
A069396
Half the number of 3 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 25, 377, 4541, 48329, 476389, 4461489, 40306317, 354713977, 3060942133, 26020259201, 218626028573, 1820140085705, 15043088032837, 123602247055953, 1010793162739629, 8234370308667673, 66870924588036181
Offset: 2
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1))); // G. C. Greubel, Apr 22 2018
-
Drop[CoefficientList[Series[x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x + 1)/(4*x^2 - 6*x + 1), {x, 0, 50}], x], 2] (* G. C. Greubel, Apr 22 2018 *)
-
x='x+O('x^30); Vec(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2 -6*x+1)) \\ G. C. Greubel, Apr 22 2018
A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A367297
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 3, 5, 10, 8, 12, 34, 38, 21, 29, 104, 161, 130, 55, 70, 305, 592, 654, 420, 144, 169, 866, 2023, 2788, 2436, 1308, 377, 408, 2404, 6556, 10810, 11756, 8574, 3970, 987, 985, 6560, 20446, 39164, 50779, 46064, 28987, 11822, 2584, 2378, 17663, 61912, 134960, 202630, 218717, 171232, 95078, 34690, 6765
Offset: 1
First eight rows:
1
2 3
5 10 8
12 34 38 21
29 104 161 130 55
70 305 592 654 420 144
169 866 2023 2788 2436 1308 377
408 2404 6556 10810 11756 8574 3970 987
Row 4 represents the polynomial p(4,x) = 12 + 34*x + 38*x^2 + 21*x^3, so (T(4,k)) = (12,34,38,21), k=0..3.
Cf.
A000129 (column 1),
A001906 (p(n,n-1)),
A107839 (row sums, p(n,1)),
A077925 (alternating row sums, p(n,-1)),
A023000 (p(n,2)),
A001076 (p(n,-2)),
A186446 (p(n,-3)),
A094440,
A367208,
A367209,
A367210,
A367211,
A367298,
A367299,
A367300,
A367301.
-
p[1, x_] := 1; p[2, x_] := 2 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367299
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 5*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 5, 5, 18, 24, 12, 62, 126, 115, 29, 192, 545, 794, 551, 70, 567, 2040, 4114, 4716, 2640, 169, 1618, 7047, 17940, 28420, 26964, 12649, 408, 4508, 23020, 70582, 140988, 185122, 150122, 60605, 985, 12336, 72222, 258492, 620379, 1027368, 1156155, 819558, 290376
Offset: 1
First eight rows:
1
2 5
5 18 24
12 62 126 115
29 192 545 794 551
70 567 2040 4114 4716 2640
169 1618 7047 17940 28420 26964 12649
408 4508 23020 70582 140988 185122 150122 60605
Row 4 represents the polynomial p(4,x) = 12 + 62*x + 126*x^2 + 115*x^3, so (T(4,k)) = (12,62,126,115), k=0..3.
Cf.
A000129 (column 1);
A004254 (p(n,n-1));
A186446 (row sums, p(n,1));
A007482 (alternating row sums, p(n,-1));
A041025 (p(n,-2));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367300.
-
p[1, x_] := 1; p[2, x_] := 2 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368151
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 2 - x^2.
Original entry on oeis.org
1, 1, 3, 3, 6, 8, 5, 21, 25, 21, 11, 48, 101, 90, 55, 21, 123, 290, 414, 300, 144, 43, 282, 850, 1416, 1551, 954, 377, 85, 657, 2255, 4671, 6109, 5481, 2939, 987, 171, 1476, 5883, 13986, 22374, 24300, 18585, 8850, 2584, 341, 3303, 14736, 40320, 74295, 97713
Offset: 1
First eight rows:
1
1 3
3 6 8
5 21 25 21
11 48 101 90 55
21 123 290 414 300 144
43 282 850 1416 1551 954 377
85 657 2255 4671 6109 5481 2939 987
Row 4 represents the polynomial p(4,x) = 5 + 21 x + 25 x^2 + 21 x^3, so (T(4,k)) = (5,21,25,21), k=0..3.
Cf.
A001045 (column 1);
A001906 (p(n,n-1));
A001076 (row sums), (p(n,1));
A077985 (alternating row sums), (p(n,-1));
A186446 (p(n,2)),
A107839, (p(n,-2));
A190989, (p(n,3));
A023000, (p(n,-3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 2 - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A110441
Triangular array formed by the Mersenne numbers.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 15, 23, 9, 1, 31, 72, 48, 12, 1, 63, 201, 198, 82, 15, 1, 127, 522, 699, 420, 125, 18, 1, 255, 1291, 2223, 1795, 765, 177, 21, 1, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1
Offset: 0
Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 08 2005
Triangle starts:
1;
3, 1;
7, 6, 1;
15, 23, 9, 1;
31, 72, 48, 12, 1;
(0, 3, -2/3, 2/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 15, 23, 9, 1
0, 31, 72, 48, 12, 1. - _Philippe Deléham_, Mar 19 2012
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 3 1 ||0 3 1 ||0 0 1 |... = | 7 6 1 |
|15 7 3 1 ||0 7 3 1 ||0 0 3 1 | |15 23 9 1|
|31 15 7 3 1 ||0 15 7 3 1||0 0 7 3 1| |... |
|... ||... ||... | |... | - _Peter Bala_, Jul 22 2014
-
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - (3 + y) x + 2 x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
A164975
Triangle T(n,k) read by rows: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(n,0) = A000045(n), 0 <= k <= n-1.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 3, 8, 8, 8, 5, 15, 25, 20, 16, 8, 30, 55, 70, 48, 32, 13, 56, 125, 175, 184, 112, 64, 21, 104, 262, 440, 512, 464, 256, 128, 34, 189, 539, 1014, 1401, 1416, 1136, 576, 256, 55, 340, 1075, 2270, 3501, 4170, 3760, 2720, 1280, 512
Offset: 1
Triangle T(n,k), 0 <= k < n, n >= 1, begins:
1;
1, 2;
2, 3, 4;
3, 8, 8, 8;
5, 15, 25, 20, 16;
8, 30, 55, 70, 48, 32;
13, 56, 125, 175, 184, 112, 64;
21, 104, 262, 440, 512, 464, 256, 128;
...
T(7,1) = 30 + 2*8 + 15 - 5 = 56.
T(6,1) = 15 + 2*5 + 8 - 3 = 30.
-
A164975 := proc(n,k) option remember; if n <=0 or k > n or k< 1 then 0; elif k= 1 then combinat[fibonacci](n); else procname(n-1,k)+2*procname(n-1,k-1)+procname(n-2,k)-procname(n-2,k-1) ; end if; end proc: # R. J. Mathar, Jan 27 2011
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209125 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A164975 *)
(* Clark Kimberling, Mar 05 2012 *)
With[{nmax = 10}, Rest[CoefficientList[CoefficientList[Series[ x/(1 - 2*y*x-x-x^2+y*x^2), {x,0,nmax}, {y,0,nmax}], x], y]]//Flatten] (* G. C. Greubel, Jan 14 2018 *)
A191897
Coefficients of the Z(n,x) polynomials; Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2.
Original entry on oeis.org
1, 1, 0, 1, 0, -2, 1, 0, -4, 0, 1, 0, -6, 0, 4, 1, 0, -8, 0, 12, 0, 1, 0, -10, 0, 24, 0, -8, 1, 0, -12, 0, 40, 0, -32, 0, 1, 0, -14, 0, 60, 0, -80, 0, 16, 1, 0, -16, 0, 84, 0, -160, 0, 80, 0, 1, 0, -18, 0, 112, 0, -280, 0, 240, 0, -32
Offset: 0
The first few rows of the coefficients of the Z(n,x) are
1;
1, 0;
1, 0, -2;
1, 0, -4, 0;
1, 0, -6, 0, 4;
1, 0, -8, 0, 12, 0;
1, 0, -10, 0, 24, 0, -8;
1, 0, -12, 0, 40, 0, -32, 0;
1, 0, -14, 0, 60, 0, -80, 0, 16;
1, 0, -16, 0, 84, 0, -160, 0, 80, 0;
Row sum without sign:
A113405(n+1).
-
nmax:=10: Z(0, x):=1 : Z(1, x):=x: for n from 2 to nmax do Z(n, x) := x*Z(n-1, x) - 2*Z(n-2, x) od: for n from 0 to nmax do for k from 0 to n do T(n, k) := coeff(Z(n, x), x, n-k) od: od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 27 2011, revised Nov 29 2012
-
a[n_, k_] := If[OddQ[k], 0, 2^(k/2)*Coefficient[ ChebyshevU[n, x/2], x, n-k]]; Flatten[ Table[ a[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Aug 02 2012, from 2nd formula *)
Showing 1-9 of 9 results.
Comments