A178929 Numbers m such that m*reversal(m) contains every decimal digit exactly once.
14979, 19167, 19497, 19839, 20247, 20499, 21657, 21864, 22185, 22227, 22329, 25299, 25755, 26325, 28344, 28665, 29643, 32184, 32319, 32418, 32724, 32889, 34194, 34692, 35265, 35853, 36489, 36957, 39588, 41754, 42327, 42564, 42723, 43476, 43656, 44382, 44445
Offset: 1
Examples
20247 is in the sequence because 20247*74202 = 1502367894 contains ten different digits; 451410 is in the sequence because 451410*14154 = 6389257140 contains ten different digits.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..141
Programs
-
Maple
with(numtheory): U:=array(1..50) :c:=0:for i from 5000 to 1000000 do: s1:=0:ll:=length(i):for q from 0 to ll do:x:=iquo(i, 10^q):y:=irem(x, 10):s1:=s1+y*10^(ll-1-q): od:n:=i*s1:l:=length(n):if l=10 then n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v : U[m]:=u:od: B:={0,1,2,3,4,5,6,7,8,9}: A:=convert(U,set):z:=nops(A):else fi: if A intersect B = B and z=10 and l=10 then c:=c+1:printf(`%d, `,i): else fi:od: print(c):
Extensions
Confirmed terms 14979-45765 and also that there are exactly 141 terms. - John W. Layman, Dec 30 2010
Comments