A179049 Odd-even partitions: number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is odd.
1, 1, 0, 2, 0, 2, 1, 3, 1, 3, 3, 4, 4, 4, 6, 6, 8, 6, 12, 8, 14, 10, 19, 13, 23, 16, 29, 21, 35, 26, 43, 34, 50, 43, 61, 54, 72, 67, 85, 84, 100, 103, 119, 126, 138, 155, 163, 186, 191, 224, 224, 268, 263, 319, 308, 378, 360, 447, 422, 523, 494, 614, 576, 716, 674, 833, 787, 964, 917, 1118
Offset: 0
Examples
From _Joerg Arndt_, Oct 27 2012: (Start) The a(20) = 14 such partitions of 20 are: [ 1] 1 2 3 14 [ 2] 1 2 5 12 [ 3] 1 2 7 10 [ 4] 1 2 17 [ 5] 1 4 5 10 [ 6] 1 4 7 8 [ 7] 1 4 15 [ 8] 1 6 13 [ 9] 1 8 11 [10] 3 4 5 8 [11] 3 4 13 [12] 3 6 11 [13] 3 8 9 [14] 5 6 9 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- G. E. Andrews, Ramanujan’s “lost” notebook. IV. Stacks and alternating parity in partitions, Adv. in Math. 53 (1984), no. 1, 55-74.
- Min-Joo Jang, Asymptotic behavior of odd-even partitions, arXiv:1703.01837v1 [math.NT], 2017.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+2)+b(n-i, i+1))) end: a:= n-> b(n, 1): seq(a(n), n=0..100); # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n==0, Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
-
PARI
N=99; x='x+O('x^N); Vec(sum(n=0,N, x^(n*(n+1)/2)/prod(k=1,n,1-x^(2*k))))
-
Sage
odd_diffs = lambda x: all(abs(d) % 2 for d in differences(x)) satisfies = lambda p: not p or (min(p) % 2 and odd_diffs(p)) def A179049(n): return len([1 for p in Partitions(n,max_slope=-1) if satisfies(p)]) # D. S. McNeil, Jan 04 2011; adapted by F. Chapoton, Feb 24 2020
-
Sage
# Alternative, after Alois P. Heinz: def A179049(n): @cached_function def h(n, k): if n == 0: return 1 if k > n: return 0 return h(n, k+2) + h(n-k, k+1) return h(n, 1) [A179049(n) for n in range(70)] # Peter Luschny, Feb 25 2020
Formula
G.f.: Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1 - x^(2*k)).
a(n) ~ (1/(2*sqrt(5)*n^(3/4)))*exp(Pi*sqrt(n/5)) [Jang 2017]. - Peter Bala, Mar 28 2017
Comments