cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179049 Odd-even partitions: number of partitions into distinct parts where all differences between consecutive parts are odd and the minimal part is odd.

Original entry on oeis.org

1, 1, 0, 2, 0, 2, 1, 3, 1, 3, 3, 4, 4, 4, 6, 6, 8, 6, 12, 8, 14, 10, 19, 13, 23, 16, 29, 21, 35, 26, 43, 34, 50, 43, 61, 54, 72, 67, 85, 84, 100, 103, 119, 126, 138, 155, 163, 186, 191, 224, 224, 268, 263, 319, 308, 378, 360, 447, 422, 523, 494, 614, 576, 716, 674, 833, 787, 964, 917, 1118
Offset: 0

Views

Author

Joerg Arndt, Jan 04 2011

Keywords

Comments

Parts are odd, even, odd, even, ... [Joerg Arndt, Oct 27 2012]

Examples

			From _Joerg Arndt_, Oct 27 2012:  (Start)
The a(20) = 14 such partitions of 20 are:
[ 1]  1 2 3 14
[ 2]  1 2 5 12
[ 3]  1 2 7 10
[ 4]  1 2 17
[ 5]  1 4 5 10
[ 6]  1 4 7 8
[ 7]  1 4 15
[ 8]  1 6 13
[ 9]  1 8 11
[10]  3 4 5 8
[11]  3 4 13
[12]  3 6 11
[13]  3 8 9
[14]  5 6 9
(End)
		

Crossrefs

Cf. A000009.
Cf. A218355 (parts are even, odd, even, odd, ...).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+2)+b(n-i, i+1)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 08 2012; revised Feb 24 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, Mod[t, 2], If[i<1, 0, b[n, i-1, t] + If[i <= n && Mod[i, 2] != t, b[n-i, i-1, Mod[i, 2]], 0]]]; a[n_] := If[n==0, 1, Sum[b[n-i, i-1, Mod[i, 2]], {i, 1, n}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
  • PARI
    N=99; x='x+O('x^N); Vec(sum(n=0,N, x^(n*(n+1)/2)/prod(k=1,n,1-x^(2*k))))
  • Sage
    odd_diffs = lambda x: all(abs(d) % 2 for d in differences(x))
    satisfies = lambda p: not p or (min(p) % 2 and odd_diffs(p))
    def A179049(n):
        return len([1 for p in Partitions(n,max_slope=-1) if satisfies(p)])
    # D. S. McNeil, Jan 04 2011; adapted by F. Chapoton, Feb 24 2020
    
  • Sage
    # Alternative, after Alois P. Heinz:
    def A179049(n):
        @cached_function
        def h(n, k):
            if n == 0: return 1
            if k  > n: return 0
            return h(n, k+2) + h(n-k, k+1)
        return h(n, 1)
    [A179049(n) for n in range(70)] # Peter Luschny, Feb 25 2020
    

Formula

G.f.: Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1 - x^(2*k)).
a(n) ~ (1/(2*sqrt(5)*n^(3/4)))*exp(Pi*sqrt(n/5)) [Jang 2017]. - Peter Bala, Mar 28 2017