cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A198897 Rank of elliptic curve y^2 = x^3 + A179107(n).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 2, 2, 4, 3, 4, 2
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2011

Keywords

Crossrefs

Cf. A179107.

Programs

  • Magma
    print([Rank(EllipticCurve([0,117073]))]);

A179108 Values x for records of minima of positive distance d between a square cubefree integer y and a cube of positive and squarefree integer x and such d = y^2 - x^3.

Original entry on oeis.org

2, 46, 109, 5234, 8158, 720114, 28187351, 110781386, 154319269, 384242766, 390620082, 3790689201, 65589428378
Offset: 1

Views

Author

Artur Jasinski, Jun 29 2010

Keywords

Comments

If x=n^2 and y=n^3 distance d=0.
For d values see A179107.
For y values see A179109.
For numbers x from 46 to 108 distance can't be less than 8.
For numbers x from 109 to 5233 distance can't be less than 15.
For numbers x from 5234 to 8157 distance can't be less than 17.
For numbers x from 8158 to 729113 distance can't be less than 24.
For numbers x from 729114 to 28187350 distance can't be less than 225.
Next conjectured terms are: 53197086958290, 12813608766102800, 810574762403977000, 471477085999389000.

Crossrefs

Cf. A078933. [From R. J. Mathar, Oct 13 2010]

Programs

  • Mathematica
    d = 3; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)] + 1; k = m^2 - n^d; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 720114}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx (* Artur Jasinski, Oct 30 2011 *)

A179109 Values y for records of minima of positive distance d between a square cubefree integer y and a cube of positive and squarefree integer x and such d = y^2 - x^3.

Original entry on oeis.org

3, 312, 1138, 378661, 736844, 611085363, 149651610621
Offset: 1

Views

Author

Artur Jasinski, Jun 29 2010

Keywords

Comments

If x=n^2 and y=n^3 distance d=0.
For x values see A179108.
For d values see A179107.
For numbers x from 46 to 108 distance can't be less than 8.
For numbers x from 109 to 5233 distance can't be less than 15.
For numbers x from 5234 to 8157 distance can't be less than 17.
For numbers x from 8158 to 729113 distance can't be less than 24.
For numbers x from 729114 to 28187350 distance can't be less than 225.

Crossrefs

Programs

  • Mathematica
    d = 3; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)] + 1; k = m^2 - n^d; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 720114}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (* Artur Jasinski, Oct 30 2011 *)

A179386 Records of minima of A154333, difference of a cube minus the next smaller square.

Original entry on oeis.org

2, 4, 7, 26, 28, 47, 49, 60, 63, 174, 207, 307, 7670, 15336, 18589, 22189, 37071, 44678, 63604, 64432
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" here means values A154333(x) such that A154333(x') > A154333(x) for all x' > x, or equivalently, the range of m(x) = min{ A154333(x') ; x' > x }. - M. F. Hasler, Sep 27 2013
For the associated x values see A179387 (and example).
For the associated values y=max{ y | y^2 < x^3 }, see A179388.
From Artur Jasinski, Jul 13 2010: (Start)
Theorem (*Artur Jasinski*)
For any positive number x >= A179387(n) the distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: The number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and completely computable, therefore such x can't exist.
(End)
An equivalent theorem is the following (*Artur Jasinski*): For any positive number x >= 1+A179387(n) distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n+1). - Artur Jasinski, Aug 11 2010
Also: The range of b(n) = min { A181138(m) | m>n }. - M. F. Hasler, Sep 26 2013
Indeed, if k=A154333(x) is a member if this sequence A179386, then also k=A181138(y) for the corresponding y, and since there is no larger x' such that x'^3-y'^3 <= k, there cannot be a larger y' such that k=A181138(y') (since this y' would require a corresponding x' > x). Conversely, the same reasoning holds for "records of minima" in A181138. - M. F. Hasler, Sep 26 and Sep 28 2013

Examples

			For numbers x > 32, A154333(x) > 7.
For numbers x > 35, A154333(x) > 26.
For numbers x > 37, A154333(x) > 28.
For numbers x > 63, A154333(x) > 47.
For numbers x > 65, A154333(x) > 49.
For numbers x > 136, A154333(x) > 60.
For numbers x > 568, A154333(x) > 63.
For numbers x > 5215, A154333(x) > 174.
For numbers x > 367806, A154333(x) > 207.
For numbers x > 939787, A154333(x) > 307.
		

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; min = 10^100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10^100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

Extensions

Edited by M. F. Hasler, Sep 27 2013

A179388 Values y for records of minima of positive distances d = A179386(n) = A154333(x) = x^3 - y^2.

Original entry on oeis.org

5, 11, 181, 207, 225, 500, 524, 1586, 13537, 376601, 223063347, 911054064, 16073515093, 22143115844, 29448160810, 1661699554612, 2498973838515, 26588790747913, 27582731314539, 178638660622364
Offset: 1

Views

Author

Artur Jasinski, Jul 12 2010, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" means values A179386(n)=A154333(x) such that A154333(x') > A154333(x) for all x' > x, or equivalently A181138(y) such that A181138(y') > A181138(y) for all y' > y. See the main entry A179386 for all further considerations. - M. F. Hasler, Sep 30 2013
For d values see A179386, for x values see A179387.
Theorem (Artur Jasinski):
For any positive number x >= A179387(n), the distance between the cube of x and the square of any y (with x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: Because number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and completely computable there can't exist any such x (or the related y).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10100, {n, 1, max}]; vecx = Table[10100, {n, 1, max}]; vecy = Table[10100, {n, 1, max}]; len = 1; min = 10100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (*Artur Jasinski*)

Formula

A179388(n) = sqrt(A179387(n)^3 - A179386(n)).

Extensions

Edited by M. F. Hasler, Sep 30 2013

A179387 Values x for "records of minima" of positive distances d = A179386(n) = A154333(x) = x^3 - y^2.

Original entry on oeis.org

3, 5, 32, 35, 37, 63, 65, 136, 568, 5215, 367806, 939787, 6369039, 7885438, 9536129, 140292677, 184151166, 890838663, 912903445, 3171881612
Offset: 1

Views

Author

Artur Jasinski, Jul 12 2010, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" means values A154333(x) such that A154333(x') > A154333(x) for all x' > x. See the main entry A179386 for all further considerations. - M. F. Hasler, Sep 30 2013
For d values see A179386; For y values see A179388.
Theorem (Artur Jasinski):
For any positive number x >= A179387(n) distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: Because number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and complete computable can't existed such x.
From Artur Jasinski, Aug 11 2010: (Start)
An equivalent theorem is the following (Artur Jasinski):
For any positive number x >= 1+A179387(n) distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n+1).
(End)

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10100, {n, 1, max}]; vecx = Table[10100, {n, 1, max}]; vecy = Table[10100, {n, 1, max}]; len = 1; min = 10100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx (*Artur Jasinski*)

Extensions

Edited by M. F. Hasler, Sep 30 2013

A179407 Values x for records of minima of positive distance d between a fifth power of positive integer x and a square of integer y such d = x^5 - y^2 (x != k^2 and y != k^5).

Original entry on oeis.org

8, 55, 76, 377, 430, 499, 655, 804, 1827, 5350, 10805, 15433, 22108, 44729, 44817, 96001, 747343, 748635, 952463, 7626590, 10741787, 12798893, 14957531, 15873532
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values, see A179406.
For y values, see A179408.
Conjecture (from Artur Jasinski):
For any positive number x >= A179407(n), the distance d between the fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx (* Artur Jasinski, Jul 13 2010 *)

Formula

a(n)^5-A179408(n)^2 = A179406(n).

A179408 Values y for records of minima of positive distance d between a fifth power of a positive integer x and a square of an integer y such d = x^5 - y^2 (x != k^2 and y != k^5).

Original entry on oeis.org

181, 22434, 50354, 2759646, 3834168, 5562261, 10980023, 18329057, 142674503, 2093555387, 12135618855, 29588700403, 72673092233, 423129175811, 425213412449, 2855547523353, 482836315990072, 484925830443335
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values, see A179406.
For x values, see A179407.
Conjecture (from Artur Jasinski):
For any positive number x >= A179407(n), the distance d between fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (* Artur Jasinski, Jul 13 2010 *)

Formula

A179407(n)^5-a(n)^2 = A179406(n).

A179784 Records for minima of the positive distance d between the seventh power of a positive integer x and the square of an integer y such that d = x^7 - y^2 (x <> k^2 and y <> k^7).

Original entry on oeis.org

7, 71, 95, 448, 1756, 2215, 3983, 6271, 15231, 26775, 26870, 57475, 102703, 221916, 257963, 9053750, 9297464, 9321703, 27188154, 48787589, 62396287, 83146412, 152244535, 44475611670, 74378479183, 179884971502, 929051699593
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^7.
For x values see A179785.
For y values see A179786.
Conjecture (Artur Jasinski): For any positive number x >= A179785(n), the distance d between the seventh power of x and the square of any y (such that x <> k^2 and y <> k^7) can't be less than A179784(n).

Crossrefs

Programs

  • Mathematica
    d = 7; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179785 Values x for records of minima of the positive distance d between the seventh power of a positive integer x and the square of an integer y such that d = x^7 - y^2 (x <> k^2 and y <> k^7).

Original entry on oeis.org

2, 3, 6, 8, 10, 14, 18, 20, 28, 30, 39, 55, 59, 88, 239, 255, 257, 374, 387, 477, 1136, 1221, 9104, 10959, 35962, 43783, 96569, 148544, 183163, 194933, 313592, 842163, 1254392, 1468637, 1506412, 2377393, 2407523, 4636475, 5756417, 6615968
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^7.
For d values see A179784.
For y values see A179786.
Conjecture (Artur Jasinski): For any positive number x >= A179785(n), the distance d between the seventh power of x and the square of any y (such that x <> k^2 and y <> k^7) can't be less than A179784(n).

Crossrefs

Programs

  • Mathematica
    d = 7; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx
Showing 1-10 of 32 results. Next