cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179125 a(n) = A000037(n)^3.

Original entry on oeis.org

8, 27, 125, 216, 343, 512, 1000, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Parameters n for which the torsion subgroup of the elliptic curve y^2=x^3+n has order 2.
Numbers which are perfect cubes (A000578) but not perfect squares (A000290).

Crossrefs

Programs

  • Magma
    [(n+Floor(1/2+Sqrt(n)))^3: n in [1..60]]; // Vincenzo Librandi, Apr 11 2020
    
  • Mathematica
    a[n_]:=(n + Floor[1/2 + Sqrt[n]])^3; Array[a,50] (* Vincenzo Librandi, Apr 11 2020 *)
  • PARI
    isok(n) = !issquare(n) && ispower(n, 3); \\ Michel Marcus, Nov 02 2013
    
  • PARI
    a(n) = (n + (1+sqrtint(4*n))\2)^3; \\ Michel Marcus, Nov 02 2013
    
  • Python
    from math import isqrt
    def A179125(n): return (n+(k:=isqrt(n))+int(n>k*(k+1)))**3 # Chai Wah Wu, Jun 05 2025

Formula

Sum_{n>=1} 1/a(n) = zeta(3) - zeta(6) = A002117 - A013664 = 0.1847138411... - Amiram Eldar, Nov 21 2020

Extensions

Exponent in the definition corrected by R. J. Mathar, Jul 20 2010