A179207 a(n) = n - 1 + ceiling((-3 + n^2)/2) if n > 1 with a(1)=1, complement of A182835.
1, 2, 5, 10, 15, 22, 29, 38, 47, 58, 69, 82, 95, 110, 125, 142, 159, 178, 197, 218, 239, 262, 285, 310, 335, 362, 389, 418, 447, 478, 509, 542, 575, 610, 645, 682, 719, 758, 797, 838, 879, 922, 965, 1010, 1055, 1102, 1149, 1198, 1247, 1298, 1349, 1402, 1455
Offset: 1
Links
- Guenther Schrack, Table of n, a(n) for n = 1..10010
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
First differences: A109613(n) for n > 2. - Guenther Schrack, Jun 06 2018
Programs
-
GAP
a:=[2,5,10,15];; for n in [5..60] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a:=Concatenation([1],a); # Muniru A Asiru, Aug 05 2018
-
Maple
a:=n->n-1+ceil((-3+n^2)/2): 1,seq(a(n),n=2..60); # Muniru A Asiru, Aug 05 2018
-
Mathematica
Table[n-1+Ceiling[(n*n-3)/2], {n,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *) Join[{1},LinearRecurrence[{2,0,-2,1},{2,5,10,15},52]] (* Ray Chandler, Jul 15 2015 *)
Formula
a(n) = n - 1 + ceiling((-3 + n^2)/2) if n > 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Joerg Arndt, Apr 02 2011
From Guenther Schrack, Jun 06 2018: (Start)
a(n) = (2*n^2 + 4*n - 9 + (-1)^n)/4 for n > 1.
a(n) = a(n-2) + 2*n for n > 3.
a(-n) = a(n-2) for n > 1.
a(n) = n - 1 + A047838(n) for n > 1. (End)
G.f.: x * (1 + x^2 + 2*x^3 - 2*x^4) / (1 - 2*x + 2*x^3 - x^4). - Michael Somos, Oct 28 2018
Sum_{n>=1} 1/a(n) = 8/3 + tan(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) - cot(sqrt(3/2)*Pi)*Pi/(2*sqrt(6)). - Amiram Eldar, Sep 16 2022