cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179207 a(n) = n - 1 + ceiling((-3 + n^2)/2) if n > 1 with a(1)=1, complement of A182835.

Original entry on oeis.org

1, 2, 5, 10, 15, 22, 29, 38, 47, 58, 69, 82, 95, 110, 125, 142, 159, 178, 197, 218, 239, 262, 285, 310, 335, 362, 389, 418, 447, 478, 509, 542, 575, 610, 645, 682, 719, 758, 797, 838, 879, 922, 965, 1010, 1055, 1102, 1149, 1198, 1247, 1298, 1349, 1402, 1455
Offset: 1

Views

Author

Clark Kimberling, Jan 07 2011

Keywords

Crossrefs

First differences: A109613(n) for n > 2. - Guenther Schrack, Jun 06 2018

Programs

  • GAP
    a:=[2,5,10,15];; for n in [5..60] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a:=Concatenation([1],a); # Muniru A Asiru, Aug 05 2018
  • Maple
    a:=n->n-1+ceil((-3+n^2)/2): 1,seq(a(n),n=2..60); # Muniru A Asiru, Aug 05 2018
  • Mathematica
    Table[n-1+Ceiling[(n*n-3)/2], {n,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
    Join[{1},LinearRecurrence[{2,0,-2,1},{2,5,10,15},52]] (* Ray Chandler, Jul 15 2015 *)

Formula

a(n) = n - 1 + ceiling((-3 + n^2)/2) if n > 1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Joerg Arndt, Apr 02 2011
From Guenther Schrack, Jun 06 2018: (Start)
a(n) = (2*n^2 + 4*n - 9 + (-1)^n)/4 for n > 1.
a(n) = a(n-2) + 2*n for n > 3.
a(-n) = a(n-2) for n > 1.
a(n) = n - 1 + A047838(n) for n > 1. (End)
G.f.: x * (1 + x^2 + 2*x^3 - 2*x^4) / (1 - 2*x + 2*x^3 - x^4). - Michael Somos, Oct 28 2018
Sum_{n>=1} 1/a(n) = 8/3 + tan(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) - cot(sqrt(3/2)*Pi)*Pi/(2*sqrt(6)). - Amiram Eldar, Sep 16 2022