cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179254 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are strictly increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 9, 9, 13, 14, 15, 19, 21, 22, 28, 30, 32, 39, 42, 44, 54, 58, 61, 72, 77, 82, 96, 102, 108, 124, 133, 141, 160, 171, 180, 203, 218, 230, 256, 273, 289, 320, 342, 361, 395, 423, 447, 486, 520, 548, 594, 635, 669, 721, 769, 811, 871, 928, 978, 1044, 1114
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3.

Examples

			There are a(17) = 21 such partitions of 17:
01:  [ 1 2 4 10 ]
02:  [ 1 2 5 9 ]
03:  [ 1 2 14 ]
04:  [ 1 3 13 ]
05:  [ 1 4 12 ]
06:  [ 1 5 11 ]
07:  [ 1 16 ]
08:  [ 2 3 12 ]
09:  [ 2 4 11 ]
10:  [ 2 5 10 ]
11:  [ 2 15 ]
12:  [ 3 4 10 ]
13:  [ 3 5 9 ]
14:  [ 3 14 ]
15:  [ 4 5 8 ]
16:  [ 4 13 ]
17:  [ 5 12 ]
18:  [ 6 11 ]
19:  [ 7 10 ]
20:  [ 8 9 ]
21:  [ 17 ]
- _Joerg Arndt_, Mar 31 2014
		

Crossrefs

Cf. A007294, A179255 (nondecreasing differences), A179269, A320382, A320385.
Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences).

Programs

  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A179254(n)
      (0..n).map{|i| f(i)}
    end
    p A179254(50) # Seiichi Manyama, Oct 12 2018
  • Sage
    def A179254(n):
        has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
        allowed = lambda x: len(x) < 3 or has_increasing_diffs(x)
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011