cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A320387 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 5, 3, 5, 7, 4, 7, 8, 6, 8, 11, 7, 9, 13, 9, 11, 16, 12, 15, 18, 13, 17, 20, 17, 21, 24, 19, 24, 30, 22, 28, 34, 26, 34, 38, 30, 37, 43, 37, 42, 48, 41, 50, 58, 48, 55, 64, 53, 64, 71, 59, 73, 81, 69, 79, 89, 79, 90, 101, 87, 100, 111
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Generating function of the "second integrals" of partitions: given a partition (p_1, ..., p_s) written in weakly decreasing order, write the sequence B = (b_1, b_2, ..., b_s) = (p_1, p_1 + p_2, ..., p_1 + ... + p_s). The sequence gives the coefficients of the generating function summing q^(b_1 + ... + b_s) over all partitions of all nonnegative integers. - William J. Keith, Apr 23 2022
From Gus Wiseman, Jan 17 2023: (Start)
Equivalently, a(n) is the number of multisets (weakly increasing sequences of positive integers) with weighted sum n. For example, the Heinz numbers of the a(0) = 1 through a(15) = 7 multisets are:
1 2 3 4 7 6 8 10 15 12 16 18 20 26 24 28
5 11 9 17 19 14 21 22 27 41 30 32
13 23 29 31 33 55 39 34
25 35 37 43 45
49 77 47
65
121
These multisets are counted by A264034. The reverse version is A007294. The zero-based version is A359678.
(End)

Examples

			There are a(29) = 15 such partitions of 29:
  01: [29]
  02: [10, 19]
  03: [11, 18]
  04: [12, 17]
  05: [13, 16]
  06: [14, 15]
  07: [5, 10, 14]
  08: [6, 10, 13]
  09: [6, 11, 12]
  10: [7, 10, 12]
  11: [8, 10, 11]
  12: [3, 6, 9, 11]
  13: [5, 7, 8, 9]
  14: [2, 4, 6, 8, 9]
  15: [3, 5, 6, 7, 8]
There are a(30) = 18 such partitions of 30:
  01: [30]
  02: [10, 20]
  03: [11, 19]
  04: [12, 18]
  05: [13, 17]
  06: [14, 16]
  07: [5, 10, 15]
  08: [6, 10, 14]
  09: [6, 11, 13]
  10: [7, 10, 13]
  11: [7, 11, 12]
  12: [8, 10, 12]
  13: [3, 6, 9, 12]
  14: [9, 10, 11]
  15: [4, 7, 9, 10]
  16: [2, 4, 6, 8, 10]
  17: [6, 7, 8, 9]
  18: [4, 5, 6, 7, 8]
		

Crossrefs

Number of appearances of n > 0 in A304818, reverse A318283.
A053632 counts compositions by weighted sum.
A358194 counts partitions by weighted sum, reverse A264034.
Weighted sum of prime indices: A359497, A359676, A359682, A359754, A359755.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
    Table[Length[Select[Range[2^n],ots[prix[#]]==n&]],{n,10}] (* Gus Wiseman, Jan 17 2023 *)
  • PARI
    seq(n)={Vec(sum(k=1, (sqrtint(8*n+1)+1)\2, my(t=binomial(k,2)); x^t/prod(j=1, k-1, 1 - x^(t-binomial(j,2)) + O(x^(n-t+1)))))} \\ Andrew Howroyd, Jan 22 2023
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320387(n)
      (0..n).map{|i| f(i)}
    end
    p A320387(50)
    

Formula

G.f.: Sum_{k>=1} x^binomial(k,2)/Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2))). - Andrew Howroyd, Jan 22 2023

A240026 Number of partitions of n such that the successive differences of consecutive parts are nondecreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 16, 21, 27, 32, 43, 50, 60, 75, 90, 103, 128, 146, 170, 203, 234, 264, 315, 355, 402, 467, 530, 589, 684, 764, 851, 969, 1083, 1195, 1360, 1504, 1659, 1863, 2063, 2258, 2531, 2779, 3039, 3379, 3709, 4032, 4474, 4880, 5304, 5846, 6373, 6891, 7578, 8227, 8894, 9727, 10550, 11357, 12405, 13404, 14419
Offset: 0

Views

Author

Joerg Arndt, Mar 31 2014

Keywords

Comments

Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) <= p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are weakly increasing. The Heinz numbers of these partitions are given by A325360. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are weakly increasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 27 such partitions of 10:
01:  [ 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 1 1 3 ]
04:  [ 1 1 1 1 1 1 4 ]
05:  [ 1 1 1 1 1 2 3 ]
06:  [ 1 1 1 1 1 5 ]
07:  [ 1 1 1 1 2 4 ]
08:  [ 1 1 1 1 6 ]
09:  [ 1 1 1 2 5 ]
10:  [ 1 1 1 7 ]
11:  [ 1 1 2 6 ]
12:  [ 1 1 3 5 ]
13:  [ 1 1 8 ]
14:  [ 1 2 3 4 ]
15:  [ 1 2 7 ]
16:  [ 1 3 6 ]
17:  [ 1 9 ]
18:  [ 2 2 2 2 2 ]
19:  [ 2 2 2 4 ]
20:  [ 2 2 6 ]
21:  [ 2 3 5 ]
22:  [ 2 8 ]
23:  [ 3 3 4 ]
24:  [ 3 7 ]
25:  [ 4 6 ]
26:  [ 5 5 ]
27:  [ 10 ]
		

Crossrefs

Cf. A240027 (strictly increasing differences).
Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Differences[#]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse
      }
      cnt
    end
    def A240026(n)
      (0..n).map{|i| f(i)}
    end
    p A240026(50) # Seiichi Manyama, Oct 13 2018

A240027 Number of partitions of n such that the successive differences of consecutive parts are strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 7, 9, 9, 13, 14, 16, 20, 23, 25, 32, 34, 38, 45, 51, 55, 65, 70, 77, 89, 99, 106, 122, 131, 143, 161, 177, 189, 211, 229, 248, 272, 298, 317, 349, 378, 406, 440, 479, 511, 554, 597, 640, 686, 744, 792, 850, 913, 973, 1039, 1122, 1189, 1268, 1358, 1444, 1532, 1646, 1742, 1847, 1975, 2094, 2210, 2366
Offset: 0

Views

Author

Joerg Arndt, Mar 31 2014

Keywords

Comments

Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are strictly increasing. The Heinz numbers of these partitions are given by A325456. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly increasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(15) = 25 such partitions of 15:
01:  [ 1 1 2 4 7 ]
02:  [ 1 1 2 11 ]
03:  [ 1 1 3 10 ]
04:  [ 1 1 4 9 ]
05:  [ 1 1 13 ]
06:  [ 1 2 4 8 ]
07:  [ 1 2 12 ]
08:  [ 1 3 11 ]
09:  [ 1 4 10 ]
10:  [ 1 14 ]
11:  [ 2 2 3 8 ]
12:  [ 2 2 4 7 ]
13:  [ 2 2 11 ]
14:  [ 2 3 10 ]
15:  [ 2 4 9 ]
16:  [ 2 13 ]
17:  [ 3 3 9 ]
18:  [ 3 4 8 ]
19:  [ 3 12 ]
20:  [ 4 4 7 ]
21:  [ 4 11 ]
22:  [ 5 10 ]
23:  [ 6 9 ]
24:  [ 7 8 ]
25:  [ 15 ]
		

Crossrefs

Cf. A240026 (nondecreasing differences).
Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A240027(n)
      (0..n).map{|i| f(i)}
    end
    p A240027(50) # Seiichi Manyama, Oct 13 2018

A179269 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are increasing, and first difference > first part.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 10, 10, 10, 13, 14, 14, 18, 19, 19, 23, 25, 25, 30, 32, 33, 38, 41, 42, 48, 52, 54, 60, 65, 67, 75, 81, 84, 92, 99, 103, 113, 121, 126, 136, 147, 153, 165, 177, 184, 197, 213, 221, 236, 253, 264, 280, 301, 313, 331, 355, 371, 390, 418, 435, 458
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Conditions as in A179254; additionally, if more than 1 part, first difference > first part.
Equivalently, number of partitions for which the sequence of part counts by decreasing part size is 1, 2, 3, ... - Olivier Gérard, Jul 28 2017

Examples

			a(10) = 5 as there are 5 such partitions of 10: 1 + 3 + 6 = 1 + 9 = 2 + 8 = 3 + 7 = 10.
a(10) = 5 as there are 5 such partitions of 10: 10, 8 + 1 + 1, 6 + 2 + 2, 4 + 3 + 3, 3 + 2 + 2 + 1 + 1 + 1 (second definition).
From _Gus Wiseman_, May 04 2019: (Start)
The a(3) = 1 through a(13) = 7 partitions whose differences are strictly increasing (with the last part taken to be 0) are the following (A = 10, B = 11, C = 12, D = 13). The Heinz numbers of these partitions are given by A325460.
  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)    (B)    (C)    (D)
       (31)  (41)  (51)  (52)  (62)  (72)  (73)   (83)   (93)   (94)
                         (61)  (71)  (81)  (82)   (92)   (A2)   (A3)
                                           (91)   (A1)   (B1)   (B2)
                                           (631)  (731)  (831)  (C1)
                                                                (841)
                                                                (931)
The a(3) = 1 through a(11) = 5 partitions whose multiplicities form an initial interval of positive integers are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A307895.
  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (A)       (B)
       (211)  (311)  (411)  (322)  (422)  (522)  (433)     (533)
                            (511)  (611)  (711)  (622)     (722)
                                                 (811)     (911)
                                                 (322111)  (422111)
(End)
		

Crossrefs

Cf. A179254 (condition only on differences), A007294 (nondecreasing instead of strictly increasing), A179255, A320382, A320385, A320387, A320388.

Programs

  • Mathematica
    Table[Length@
      Select[IntegerPartitions[n],
       And @@ Equal[Range[Length[Split[#]]], Length /@ Split[#]] &], {n,
    0, 40}]   (* Olivier Gérard, Jul 28 2017 *)
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • PARI
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, L[w-1][i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); concat([1], vector(n, i, vecsum(M[i,])))} \\ Andrew Howroyd, Aug 27 2019
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A179269(n)
      (0..n).map{|i| f(i)}
    end
    p A179269(50) # Seiichi Manyama, Oct 12 2018
    
  • Sage
    def A179269(n):
        has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
        special = lambda x: (x[1]-x[0]) > x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_increasing_diffs(x))
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: Sum_{k>=0} x^(k*(k+1)*(k+2)/6) / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019

A325547 Number of compositions of n with strictly increasing differences.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 18, 24, 30, 45, 57, 71, 96, 120, 148, 192, 235, 286, 354, 431, 518, 628, 752, 893, 1063, 1262, 1482, 1744, 2046, 2386, 2775, 3231, 3733, 4305, 4977, 5715, 6536, 7507, 8559, 9735, 11112, 12608, 14252, 16177, 18265, 20553, 23204, 26090, 29223
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 11 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)
       (11)  (12)  (13)   (14)   (15)
             (21)  (22)   (23)   (24)
                   (31)   (32)   (33)
                   (112)  (41)   (42)
                   (211)  (113)  (51)
                          (212)  (114)
                          (311)  (213)
                                 (312)
                                 (411)
                                 (2112)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Differences[#]&]],{n,0,15}]
  • PARI
    \\ Row sums of R(n) give A179269 (breakdown by width)
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, v[i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w])));  x^i*(1 + x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 27 2019

Extensions

a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 27 2019

A325548 Number of compositions of n with strictly decreasing differences.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 10, 13, 19, 23, 29, 38, 46, 55, 69, 80, 96, 115, 132, 154, 183, 207, 238, 276, 314, 356, 405, 455, 513, 579, 647, 724, 809, 897, 998, 1107, 1225, 1350, 1486, 1639, 1805, 1973, 2166, 2374, 2586, 2824, 3084, 3346, 3646, 3964, 4286, 4655, 5047
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(8) = 19 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)     (7)    (8)
       (11)  (12)  (13)   (14)   (15)    (16)   (17)
             (21)  (22)   (23)   (24)    (25)   (26)
                   (31)   (32)   (33)    (34)   (35)
                   (121)  (41)   (42)    (43)   (44)
                          (122)  (51)    (52)   (53)
                          (131)  (132)   (61)   (62)
                          (221)  (141)   (133)  (71)
                                 (231)   (142)  (134)
                                 (1221)  (151)  (143)
                                         (232)  (152)
                                         (241)  (161)
                                         (331)  (233)
                                                (242)
                                                (251)
                                                (332)
                                                (341)
                                                (431)
                                                (1331)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l, d) option remember; `if`(n=0, 1, add(`if`(l=0 or
           j-l b(n, 0$2):
    seq(a(n), n=0..52);  # Alois P. Heinz, Jan 27 2024
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Differences[#]&]],{n,0,15}]

Extensions

a(26)-a(44) from Lars Blomberg, May 30 2019
a(45)-a(52) from Alois P. Heinz, Jan 27 2024

A179255 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nondecreasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 8, 9, 10, 13, 15, 16, 22, 24, 26, 33, 36, 39, 50, 54, 58, 70, 77, 83, 100, 109, 116, 137, 150, 159, 186, 202, 216, 249, 270, 288, 328, 355, 379, 428, 462, 491, 554, 597, 633, 707, 760, 807, 899, 964, 1020, 1127, 1211, 1282, 1412, 1512, 1596, 1750, 1873, 1976, 2160, 2305, 2434, 2652, 2826, 2978
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) <= p(k) - p(k-1) for all k >= 3.

Examples

			There are a(17) = 26 such partitions of 17:
01:  [ 1 2 3 4 7 ]
02:  [ 1 2 3 11 ]
03:  [ 1 2 4 10 ]  *
04:  [ 1 2 5 9 ]   *
05:  [ 1 2 14 ]   *
06:  [ 1 3 5 8 ]
07:  [ 1 3 13 ]   *
08:  [ 1 4 12 ]   *
09:  [ 1 5 11 ]   *
10:  [ 1 16 ]   *
11:  [ 2 3 4 8 ]
12:  [ 2 3 5 7 ]
13:  [ 2 3 12 ]   *
14:  [ 2 4 11 ]   *
15:  [ 2 5 10 ]   *
16:  [ 2 15 ]   *
17:  [ 3 4 10 ]   *
18:  [ 3 5 9 ]   *
19:  [ 3 14 ]   *
20:  [ 4 5 8 ]   *
21:  [ 4 13 ]   *
22:  [ 5 12 ]   *
23:  [ 6 11 ]   *
24:  [ 7 10 ]   *
25:  [ 8 9 ]   *
26:  [ 17 ]   *
The 21 partitions marked with * have strictly increasing differences, see the example for A179254.
- _Joerg Arndt_, Mar 31 2014
		

Crossrefs

Cf. A009994.
Cf. A179254 (strictly increasing differences), A179269, A007294.
Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences), A320382.

Programs

  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse
      }
      cnt
    end
    def A179255(n)
      (0..n).map{|i| f(i)}
    end
    p A179255(50) # Seiichi Manyama, Oct 12 2018
  • Sage
    def A179255(n):
        has_nondecreasing_diffs = lambda x: min(differences(x,2)) >= 0
        allowed = lambda x: len(x) < 3 or has_nondecreasing_diffs(x)
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    

A325391 Number of reversed integer partitions of n whose k-th differences are strictly increasing for all k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 9, 9, 13, 13, 15, 19, 20, 20, 28, 28, 30, 36, 40, 40, 50, 50, 56, 64, 68, 68, 86, 86, 92, 102, 112, 114, 133, 133, 146, 158, 173, 173, 202, 202, 215, 237, 256, 256, 287, 287, 324, 340, 359, 359, 403, 423, 446, 464, 495, 495
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325398.

Examples

			The a(1) = 1 through a(9) = 6 reversed partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (12)  (13)  (14)  (15)  (16)   (17)   (18)
                        (23)  (24)  (25)   (26)   (27)
                                    (34)   (35)   (36)
                                    (124)  (125)  (45)
                                                  (126)
The smallest reversed strict partition with strictly increasing differences not counted by this sequence is (1,2,4,7), whose first and second differences are (1,2,3) and (1,1) respectively.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],And@@Table[Less@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A320385 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are decreasing, and first difference < first part.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 4, 3, 3, 5, 3, 5, 6, 4, 5, 7, 5, 7, 8, 6, 7, 10, 8, 9, 11, 8, 11, 13, 9, 13, 15, 12, 14, 17, 13, 16, 20, 15, 18, 22, 18, 21, 25, 20, 23, 27, 23, 28, 30, 26, 30, 34, 30, 33, 38, 31, 38, 43, 36, 42, 46, 42, 47, 50, 45, 50, 58, 51, 55
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2018

Keywords

Examples

			There are a(29) = 10 such partitions of 29:
01: [29]
02: [10, 19]
03: [11, 18]
04: [12, 17]
05: [13, 16]
06: [14, 15]
07: [6, 10, 13]
08: [6, 11, 12]
09: [7, 10, 12]
10: [8, 10, 11]
There are a(30) = 8 such partitions of 30:
01: [30]
02: [11, 19]
03: [12, 18]
04: [13, 17]
05: [14, 16]
06: [6, 11, 13]
07: [7, 11, 12]
08: [4, 7, 9, 10]
		

Crossrefs

Programs

  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
      }
      cnt
    end
    def A320385(n)
      (0..n).map{|i| f(i)}
    end
    p A320385(50)

A342530 Number of strict chains of divisors ending with n and having distinct first quotients.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 6, 3, 6, 2, 12, 2, 6, 6, 9, 2, 12, 2, 12, 6, 6, 2, 28, 3, 6, 6, 12, 2, 26, 2, 14, 6, 6, 6, 31, 2, 6, 6, 28, 2, 26, 2, 12, 12, 6, 2, 52, 3, 12, 6, 12, 2, 28, 6, 28, 6, 6, 2, 66, 2, 6, 12, 25, 6, 26, 2, 12, 6, 26, 2, 76, 2, 6, 12, 12, 6, 26
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(12) = 12 chains (reversed):
  1  2    3    4    5    6      7    8      9    10      11    12
     2/1  3/1  4/1  5/1  6/1    7/1  8/1    9/1  10/1    11/1  12/1
               4/2       6/2         8/2    9/3  10/2          12/2
                         6/3         8/4         10/5          12/3
                         6/2/1       8/2/1       10/2/1        12/4
                         6/3/1       8/4/1       10/5/1        12/6
                                                               12/2/1
                                                               12/3/1
                                                               12/4/1
                                                               12/4/2
                                                               12/6/1
                                                               12/6/2
Not counted under a(12) are: 12/4/2/1, 12/6/2/1, 12/6/3, 12/6/3/1.
		

Crossrefs

The version for weakly increasing first quotients is A057567.
The version for equal first quotients is A169594.
The case of chains starting with 1 is A254578.
The version for strictly increasing first quotients is A342086.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A067824 counts strict chains of divisors ending with n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A334997 counts chains of divisors of n by length.
A342495/A342529 count compositions with equal/distinct quotients.
A342496/A342514 count partitions with equal/distinct quotients.
A342515/A342520 count strict partitions with equal/distinct quotients.
A342522/A342521 rank partitions with equal/distinct quotients.

Programs

  • Mathematica
    cmi[n_]:=Prepend[Prepend[#,n]&/@Join@@cmi/@Most[Divisors[n]],{n}];
    Table[Length[Select[cmi[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,100}]

Formula

a(n) = Sum_{d|n} A254578(d). - Ridouane Oudra, Jun 17 2025
Showing 1-10 of 13 results. Next