cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A320347 Number of partitions of n into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a3, ..., a_{m-1} - a_m are different.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 18, 19, 24, 31, 29, 40, 44, 51, 56, 72, 69, 90, 97, 114, 125, 154, 151, 192, 207, 237, 255, 304, 314, 377, 401, 457, 493, 573, 596, 698, 750, 845, 905, 1034, 1104, 1255, 1354, 1507, 1624, 1817, 1955, 2178, 2357, 2605, 2794, 3077, 3380
Offset: 1

Views

Author

Seiichi Manyama, Oct 11 2018

Keywords

Comments

In other words, a(n) is the number of strict integer partitions of n with distinct first differences. - Gus Wiseman, Mar 25 2021

Examples

			n = 9
[9]        ooooooooo
------------------------------------
[8, 1]      *******o  a_1 - a_2 = 7.
            oooooooo
------------------------------------
[7, 2]       *****oo  a_1 - a_2 = 5.
             ooooooo
------------------------------------
[6, 3]        ***ooo  a_1 - a_2 = 3.
              oooooo
------------------------------------
[6, 2, 1]         *o  a_2 - a_3 = 1.
              ****oo  a_1 - a_2 = 4.
              oooooo
------------------------------------
[5, 4]         *oooo  a_1 - a_2 = 1.
               ooooo
------------------------------------
a(9) = 6.
		

Crossrefs

The equal instead of distinct version is A049980.
The non-strict version is A325325 (ranking: A325368).
The non-strict ordered version is A325545.
The version for first quotients is A342520 (non-strict: A342514).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, Mar 27 2021 *)

A169594 Number of divisors of n, counting divisor multiplicity in n.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 7, 2, 4, 4, 9, 2, 7, 2, 7, 4, 4, 2, 10, 4, 4, 6, 7, 2, 8, 2, 11, 4, 4, 4, 12, 2, 4, 4, 10, 2, 8, 2, 7, 7, 4, 2, 14, 4, 7, 4, 7, 2, 10, 4, 10, 4, 4, 2, 13, 2, 4, 7, 15, 4, 8, 2, 7, 4, 8, 2, 16, 2, 4, 7, 7, 4, 8, 2, 14, 9, 4, 2, 13, 4, 4, 4, 10, 2, 13, 4, 7, 4, 4, 4, 17, 2, 7
Offset: 1

Views

Author

Joseph L. Pe, Dec 02 2009

Keywords

Comments

The multiplicity of a divisor d > 1 in n is defined as the largest power i for which d^i divides n; and for d = 1 it is defined as 1.
a(n) is also the sum of the multiplicities of the divisors of n.
In other words, a(n) = 1 + sum of the highest exponents e_i for which each number k_i in range 2 .. n divide n, as {k_i}^{e_i} | n. For nondivisors of n this exponent e_i is 0, for n itself it is 1. - Antti Karttunen, May 20 2017
From Gus Wiseman, Mar 25 2021: (Start)
Also the number of strict chains of divisors ending with n and having constant (equal) first quotients. The case starting with 1 is A089723. For example, the a(1) = 1 through a(12) = 7 chains are:
1 2 3 4 5 6 7 8 9 10 11 12
1|2 1|3 1|4 1|5 1|6 1|7 1|8 1|9 1|10 1|11 1|12
2|4 2|6 2|8 3|9 2|10 2|12
1|2|4 3|6 4|8 1|3|9 5|10 3|12
2|4|8 4|12
1|2|4|8 6|12
3|6|12
(End)
a(n) depends only on the prime signature of n. - David A. Corneth, Mar 28 2021

Examples

			The divisors of 8 are 1, 2, 4, 8 of multiplicity 1, 3, 1, 1, respectively. So a(8) = 1 + 3 + 1 + 1 = 6.
		

Crossrefs

Cf. A168512.
Row sums of A286561, A286563 and A286564.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A057567 counts chains of divisors with weakly increasing first quotients.
A067824 counts strict chains of divisors ending with n.
A253249 counts strict chains of divisors.
A334997 counts chains of divisors of n by length.
A342086 counts chains of divisors with strictly increasing first quotients.
A342496 counts partitions with equal first quotients (strict: A342515, ranking: A342522, ordered: A342495).
A342530 counts chains of divisors with distinct first quotients.
First differences of A078651.

Programs

  • Maple
    a := n -> ifelse(n < 2, 1, 1 + add(padic:-ordp(n, k), k = 2..n)):
    seq(a(n), n = 1..98);  # Peter Luschny, Apr 10 2025
  • Mathematica
    divmult[d_, n_] := Module[{output, i}, If[d == 1, output = 1, If[d == n, output = 1, i = 0; While[Mod[n, d^(i + 1)] == 0, i = i + 1]; output = i]]; output]; dmt0[n_] := Module[{divs, l}, divs = Divisors[n]; l = Length[divs]; Sum[divmult[divs[[i]], n], {i, 1, l}]]; Table[dmt0[i], {i, 1, 40}]
    Table[1 + DivisorSum[n, IntegerExponent[n, #] &, # > 1 &], {n, 98}] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    A286561(n,k) = { my(i=1); if(1==k, 1, while(!(n%(k^i)), i = i+1); (i-1)); };
    A169594(n) = sumdiv(n,d,A286561(n,d)); \\ Antti Karttunen, May 20 2017
    
  • PARI
    a(n) = { if(n == 1, return(1)); my(f = factor(n), u = vecmax(f[, 2]), cf = f, res = numdiv(f) - u + 1); for(i = 2, u, cf[, 2] = f[, 2]\i; res+=numdiv(factorback(cf)) ); res } \\ David A. Corneth, Mar 29 2021
    
  • PARI
    A169594(n) = {my(s=0, k=2); while(k<=n, s+=valuation(n, k); k=k+1); s + 1} \\ Zhuorui He, Aug 28 2025
    
  • Python
    def a286561(n, k):
        i=1
        if k==1: return 1
        while n%(k**i)==0:
            i+=1
        return i-1
    def a(n): return sum([a286561(n, d) for d in divisors(n)]) # Indranil Ghosh, May 20 2017
  • Scheme
    (define (A169594 n) (add (lambda (k) (A286561bi n k)) 1 n))
    ;; Implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    ;; For A286561bi see A286561. - Antti Karttunen, May 20 2017
    

Formula

From Friedjof Tellkamp, Feb 29 2024: (Start)
a(n) = A309891(n) + 1.
G.f.: x/(1-x) + Sum_{k>=2, j>=1} x^(k^j)/(1-x^(k^j)).
Dirichlet g.f.: zeta(s) * (1 + Sum_{k>=1} (zeta(k*s) - 1)).
Sum_{n>=1} a(n)/n^2 = (7/24) * Pi^2. (End)

Extensions

Extended by Ray Chandler, Dec 08 2009

A342520 Number of strict integer partitions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 10, 12, 13, 16, 20, 25, 30, 37, 42, 50, 57, 65, 80, 93, 108, 127, 147, 170, 198, 225, 258, 297, 340, 385, 448, 499, 566, 647, 737, 832, 937, 1064, 1186, 1348, 1522, 1701, 1916, 2157, 2402, 2697, 3013, 3355, 3742, 4190, 4656, 5191
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict integer partitions of n with distinct first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (12,10,5,2,1) has first quotients (5/6,1/2,2/5,1/2) so is not counted under a(30), even though the first differences (-2,-5,-3,-1) are distinct.
The a(1) = 1 through a(13) = 16 partitions (A..D = 10..13):
  1   2   3    4    5    6     7    8     9     A      B      C     D
          21   31   32   42    43   53    54    64     65     75    76
                    41   51    52   62    63    73     74     84    85
                         321   61   71    72    82     83     93    94
                                    431   81    91     92     A2    A3
                                    521   432   532    A1     B1    B2
                                          531   541    542    543   C1
                                          621   631    632    642   643
                                                721    641    651   652
                                                4321   731    732   742
                                                       821    741   751
                                                       5321   831   832
                                                              921   841
                                                                    A21
                                                                    5431
                                                                    7321
		

Crossrefs

The version for differences instead of quotients is A320347.
The non-strict version is A342514 (ranking: A342521).
The equal instead of distinct version is A342515.
The non-strict ordered version is A342529.
The version for strict divisor chains is A342530.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342086 counts strict chains of divisors with strictly increasing quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

A342521 Heinz numbers of integer partitions with distinct first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 1365 are {2,3,4,6}, with first quotients (3/2,4/3,3/2), so 1365 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  100: {1,1,3,3}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A130091.
For differences instead of quotients we have A325368 (count: A325325).
These partitions are counted by A342514 (strict: A342520, ordered: A342529).
The equal instead of distinct version is A342522.
The version counting strict divisor chains is A342530.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],UnsameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342524 Heinz numbers of integer partitions with strictly increasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 84 are {1,1,2,4}, with first quotients (1,2,2), so 84 is not in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   18: {1,2,2}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   50: {1,3,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For differences instead of quotients we have A325456 (count: A240027).
For multiplicities (prime signature) instead of quotients we have A334965.
The version counting strict divisor chains is A342086.
These partitions are counted by A342498 (strict: A342517, ordered: A342493).
The weakly increasing version is A342523.
The strictly decreasing version is A342525.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A342525 Heinz numbers of integer partitions with strictly decreasing first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 150 are {1,2,3,3}, with first quotients (2,3/2,1), so 150 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A304686.
For differences instead of quotients we have A325457 (count: A320470).
The version counting strict divisor chains is A342086.
These partitions are counted by A342499 (strict: A342518, ordered: A342494).
The strictly increasing version is A342524.
The weakly decreasing version is A342526.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Showing 1-6 of 6 results.