cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A326677 Numbers with a record number of divisors, counted with multiplicity (A169594).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 120, 144, 240, 288, 360, 432, 576, 720, 1080, 1260, 1440, 2160, 2520, 2880, 3600, 5040, 7200, 7560, 8640, 10080, 14400, 15120, 20160, 25200, 30240, 40320, 45360, 50400, 55440, 75600, 100800, 110880, 151200, 166320
Offset: 1

Views

Author

Amiram Eldar, Oct 18 2019

Keywords

Comments

The corresponding record values are 1, 2, 4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 22, 24, 26, 28, 29, ...
Since the value of A169594(k) depends only on the prime signature of k, this sequence is a subsequence of A025487.

Examples

			The first values of A169594(n) for n=1..8 are {1, 2, 2, 4, 2, 4, 2, 6}. The record values are 1, 2, 4, 6, for 1, 2, 4, 8. Therefore this sequence begins with 1, 2, 4, 8.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=1 + DivisorSum[n, IntegerExponent[n, #] &, # > 1 &]; s={}; dm = 0; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 10000}]; s (* after Michael De Vlieger at A169594 *)

A286561 Square array A(n,k): A(n,1) = 1, and for k > 1, A(n,k) = the highest exponent e such that k^e divides n, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 20 2017

Keywords

Examples

			The top left 18 X 18 corner of the array:
  n \k 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18
     .-----------------------------------------------------
   1 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   2 | 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   3 | 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   4 | 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   5 | 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   6 | 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   7 | 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   8 | 1, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
   9 | 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
  10 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
  11 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
  12 | 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
  13 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
  14 | 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
  15 | 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
  16 | 1, 4, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
  17 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
  18 | 1, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
  ---------------------------------------------------------
A(18,2) = 1, because 2^1 divides 18, but 2^2 does not. A(18,3) = 2, because 3^2 divides 18 (but 3^3 does not). A(18,4) = 0, because 4^0 (= 1) divides 18, but 4^1 does not. A(18,18) = 1, because 18^1 divides 18, but 18^2 does not.
A(2,18) = 0, because 18^0 divides 2, but 18^1 does not.
		

Crossrefs

Cf. A286562 (transpose), A286563 (lower triangular region), A286564 (lower triangular region reversed).
Cf. A169594 (row sums), also A168512, A178638, A186643.
Cf. also array A286156.

Programs

  • Mathematica
    Table[Function[m, If[k == 1, 1, IntegerExponent[m, k]]][n - k + 1], {n, 15}, {k, n}] // TableForm (* Michael De Vlieger, May 20 2017 *)
  • PARI
    A286561(n,k) = if(1==k, 1, valuation(n, k)); \\ Antti Karttunen, May 27 2017
    
  • Python
    def a(n, k):
        i=1
        if k==1: return 1
        while n%(k**i)==0:
            i+=1
        return i-1
    for n in range(1, 21): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, May 20 2017
  • Scheme
    (define (A286561 n) (A286561bi (A002260 n) (A004736 n)))
    (define (A286561bi row col) (if (= 1 col) 1 (let loop ((i 1)) (if (not (zero? (modulo row (expt col i)))) (- i 1) (loop (+ 1 i))))))
    

A342084 Number of chains of distinct strictly superior divisors starting with n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 9, 1, 2, 2, 4, 1, 7, 1, 6, 2, 2, 2, 10, 1, 2, 2, 9, 1, 6, 1, 4, 4, 2, 1, 19, 1, 4, 2, 4, 1, 8, 2, 9, 2, 2, 1, 20, 1, 2, 4, 10, 2, 6, 1, 4, 2, 7, 1, 29, 1, 2, 4, 4, 2, 6, 1, 19, 3, 2, 1, 19, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2021

Keywords

Comments

We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673.
These chains have first-quotients (in analogy with first-differences) that are term-wise < their decapitation (maximum element removed). Equivalently, x < y^2 for all adjacent x, y. For example, the divisor chain q = 30/6/3 has first-quotients (5,2), which are < (6,3), so q is counted under a(30).
Also the number of ordered factorizations of n where each factor is less than the product of all previous factors.

Examples

			The a(n) chains for n = 2, 6, 12, 16, 24, 30, 32, 36:
  2  6    12      16      24         30       32         36
     6/3  12/4    16/8    24/6       30/6     32/8       36/9
          12/6    16/8/4  24/8       30/10    32/16      36/12
          12/6/3          24/12      30/15    32/8/4     36/18
                          24/6/3     30/6/3   32/16/8    36/12/4
                          24/8/4     30/10/5  32/16/8/4  36/12/6
                          24/12/4    30/15/5             36/18/6
                          24/12/6                        36/18/9
                          24/12/6/3                      36/12/6/3
                                                         36/18/6/3
The a(n) ordered factorizations for n = 2, 6, 12, 16, 24, 30, 32, 36:
  2  6    12     16     24       30     32       36
     3*2  4*3    8*2    6*4      6*5    8*4      9*4
          6*2    4*2*2  8*3      10*3   16*2     12*3
          3*2*2         12*2     15*2   4*2*4    18*2
                        3*2*4    3*2*5  8*2*2    4*3*3
                        4*2*3    5*2*3  4*2*2*2  6*2*3
                        4*3*2    5*3*2           6*3*2
                        6*2*2                    9*2*2
                        3*2*2*2                  3*2*2*3
                                                 3*2*3*2
		

Crossrefs

The restriction to powers of 2 is A045690, with reciprocal version A040039.
The inferior version is A337135.
The strictly inferior version is A342083.
The superior version is A342085.
The additive version allowing equality is A342094 or A342095.
The additive version is A342096 or A342097.
A000005 counts divisors.
A001055 counts factorizations.
A003238 counts divisibility chains summing to n-1, with strict case A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
- Superior: A033677, A070038, A161908, A341591.
- Strictly Inferior: A060775, A070039, A333806, A341674.
- Strictly Superior: A064052/A048098, A140271, A238535, A341642, A341673.

Programs

  • Mathematica
    ceo[n_]:=Prepend[Prepend[#,n]&/@Join@@ceo/@Select[Most[Divisors[n]],#>n/#&],{n}];
    Table[Length[ceo[n]],{n,100}]

Formula

a(2^n) = A045690(n).

A342085 Number of decreasing chains of distinct superior divisors starting with n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 4, 2, 2, 1, 11, 2, 2, 3, 4, 1, 7, 1, 10, 2, 2, 2, 15, 1, 2, 2, 10, 1, 6, 1, 4, 5, 2, 1, 26, 2, 5, 2, 4, 1, 11, 2, 10, 2, 2, 1, 21, 1, 2, 5, 20, 2, 6, 1, 4, 2, 7, 1, 39, 1, 2, 5, 4, 2, 6, 1, 23, 6, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2021

Keywords

Comments

We define a divisor d|n to be superior if d >= n/d. Superior divisors are counted by A038548 and listed by A161908.
These chains have first-quotients (in analogy with first-differences) that are term-wise less than or equal to their decapitation (maximum element removed). Equivalently, x <= y^2 for all adjacent x, y. For example, the divisor chain q = 24/8/4/2 has first-quotients (3,2,2), which are less than or equal to (8,4,2), so q is counted under a(24).
Also the number of ordered factorizations of n where each factor is less than or equal to the product of all previous factors.

Examples

			The a(n) chains for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
  2  4    8      12      16        20       24         30       32
     4/2  8/4    12/4    16/4      20/5     24/6       30/6     32/8
          8/4/2  12/6    16/8      20/10    24/8       30/10    32/16
                 12/4/2  16/4/2    20/10/5  24/12      30/15    32/8/4
                 12/6/3  16/8/4             24/6/3     30/6/3   32/16/4
                         16/8/4/2           24/8/4     30/10/5  32/16/8
                                            24/12/4    30/15/5  32/8/4/2
                                            24/12/6             32/16/4/2
                                            24/8/4/2            32/16/8/4
                                            24/12/4/2           32/16/8/4/2
                                            24/12/6/3
The a(n) ordered factorizations for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
  2  4    8      12     16       20     24       30     32
     2*2  4*2    4*3    4*4      5*4    6*4      6*5    8*4
          2*2*2  6*2    8*2      10*2   8*3      10*3   16*2
                 2*2*3  2*2*4    5*2*2  12*2     15*2   4*2*4
                 3*2*2  4*2*2           3*2*4    3*2*5  4*4*2
                        2*2*2*2         4*2*3    5*2*3  8*2*2
                                        4*3*2    5*3*2  2*2*2*4
                                        6*2*2           2*2*4*2
                                        2*2*2*3         4*2*2*2
                                        2*2*3*2         2*2*2*2*2
                                        3*2*2*2
		

Crossrefs

The restriction to powers of 2 is A045690.
The inferior version is A337135.
The strictly inferior version is A342083.
The strictly superior version is A342084.
The additive version is A342094, with strict case A342095.
The additive version not allowing equality is A342098.
A001055 counts factorizations.
A003238 counts divisibility chains summing to n-1, with strict case A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A207375 lists central divisors.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
- Inferior: A033676, A066839, A072499, A161906.
- Superior: A033677, A070038, A161908, A341676.
- Strictly Inferior: A060775, A070039, A333806, A341674.
- Strictly Superior: A064052/A048098, A140271, A238535, A341673.

Programs

  • Maple
    a:= proc(n) option remember; 1+add(`if`(d>=n/d,
          a(d), 0), d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..128);  # Alois P. Heinz, Jun 24 2021
  • Mathematica
    cmo[n_]:=Prepend[Prepend[#,n]&/@Join@@cmo/@Select[Most[Divisors[n]],#>=n/#&],{n}];
    Table[Length[cmo[n]],{n,100}]

Formula

a(2^n) = A045690(n).

A293514 a(n) = Product_{d|n, d>1} prime(A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 2, 2, 6, 2, 8, 2, 20, 6, 8, 2, 48, 2, 8, 8, 84, 2, 48, 2, 48, 8, 8, 2, 320, 6, 8, 20, 48, 2, 128, 2, 264, 8, 8, 8, 864, 2, 8, 8, 320, 2, 128, 2, 48, 48, 8, 2, 2688, 6, 48, 8, 48, 2, 320, 8, 320, 8, 8, 2, 3072, 2, 8, 48, 1560, 8, 128, 2, 48, 8, 128, 2, 11520, 2, 8, 48, 48, 8, 128, 2, 2688, 84, 8, 2, 3072, 8, 8, 8, 320
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Examples

			For n = 24, its divisors larger than one are: 2, 3, 4, 6, 8, 12, 24. Only 2 has valuation > 1, namely A286561(24,2) = 3 (as 2^3 divides 24), while the other six have valuation 1. Thus a(24) = prime(1)^6 * prime(3) = 64*5 = 320.
For n = 64, its divisors larger than one are: 2, 4, 8, 16, 32, 64. We see that 2^6 = 4^3 = 8^2 = 64, while valuation of the last three 16, 32 and 64 is 1. Thus a(64) = prime(1)^3 * prime(2) * prime(3) * prime(6) = 2^3 * 3 * 5 * 13 = 1560.
		

Crossrefs

Programs

  • PARI
    A293514(n) = { my(m=1); fordiv(n,d,if(d>1, m *= prime(valuation(n,d)))); m; };

Formula

a(n) = Product_{d|n, d>1} A000040(A286561(n,d)).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A056595(n) [See A046951.]
1+A056239(a(n)) = A169594(n).
A064989(a(n)) = A293515(n).

A286563 Triangular table T(n,k) read by rows: T(n,1) = 1, and for 1 < k <= n, T(n,k) = the highest exponent e such that k^e divides n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 0, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, May 20 2017

Keywords

Comments

T(n,k) > 0 for k in row n of A027750. - Michael De Vlieger, May 20 2017
Compare rows to those of triangle A279907, smallest exponent e of n divisible by k. The values of k > -1 in row n of A279907 pertain to k in row n of A162306 rather than k in row n of A027750. - Michael De Vlieger, May 21 2017

Examples

			The first fifteen rows of this triangular table:
  1,
  1, 1,
  1, 0, 1,
  1, 2, 0, 1,
  1, 0, 0, 0, 1,
  1, 1, 1, 0, 0, 1,
  1, 0, 0, 0, 0, 0, 1,
  1, 3, 0, 1, 0, 0, 0, 1,
  1, 0, 2, 0, 0, 0, 0, 0, 1,
  1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1,
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
  1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
  1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
		

Crossrefs

Lower triangular region of A286561.
Cf. A286564 (same triangle reversed).
Cf. A169594 (row sums).
Cf. also arrays A051731, A286158, A027750, A279907, A280269.

Programs

  • Maple
    T := (n, k) -> ifelse(k = 1, 1, padic:-ordp(n, k)):
    for n from 1 to 12 do seq(T(n, k), k = 1..n) od;  # Peter Luschny, Apr 07 2025
  • Mathematica
    Table[If[k == 1, 1, IntegerExponent[n, k]], {n, 15}, {k, n}] // Flatten (* Michael De Vlieger, May 20 2017 *)
  • Python
    def T(n, k):
        i=1
        if k==1: return 1
        while n%(k**i)==0:
            i+=1
        return i-1
    for n in range(1, 21): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, May 20 2017
  • Scheme
    (define (A286563 n) (A286561bi (A002024 n) (A002260 n))) ;; For A286561bi see A286561.
    

Formula

T(n,k) = A286561(n,k) listed row by row for n >= 1, k = 1 .. n.

A168512 Sum of divisors of n weighted by divisor multiplicity in n.

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 19, 16, 18, 12, 30, 14, 24, 24, 41, 18, 42, 20, 44, 32, 36, 24, 64, 36, 42, 46, 58, 30, 72, 32, 75, 48, 54, 48, 102, 38, 60, 56, 94, 42, 96, 44, 86, 81, 72, 48, 134, 64, 98, 72, 100, 54, 126, 72, 124, 80, 90, 60, 170, 62, 96, 107, 153, 84, 144, 68, 128, 96
Offset: 1

Views

Author

Joseph L. Pe, Nov 28 2009

Keywords

Comments

If d > 1 divides n, the multiplicity of d in n is the largest integer i such that d^i divides n; e.g. the multiplicity of 4 in 16 is 2. If d = 1 (degenerate case), then the multiplicity of d is defined as 1.

Examples

			The divisors of 16 are 1, 2, 4, 8, 16, which are of multiplicity 1, 4, 2, 1, 1, respectively, in 16. So a(16) = 1*1 + 4*2 + 2*4 + 1*8 + 1*16 = 41.
		

Crossrefs

Programs

  • Mathematica
    Table[1 + Total[Function[i, i*Select[Range[Log[i, n]], Divisible[n, i^#] &][[-1]]] /@ Rest@Divisors@n], {n, 69}] (* Ivan Neretin, Jul 26 2015 *)
    Table[1 + DivisorSum[n, # IntegerExponent[n, #] &, # > 1 &], {n, 69}] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    A286561(n,k) = { my(i=1); if(1==k, 1, while(!(n%(k^i)), i = i+1); (i-1)); };
    A168512(n) = sumdiv(n,d,A286561(n,d)*d); \\ Antti Karttunen, May 20 2017

Formula

a(n) = Sum_{d|n} A286561(n,d)*d. - Antti Karttunen, May 20 2017

Extensions

Extended by Ray Chandler, Dec 08 2009

A342522 Heinz numbers of integer partitions with constant (equal) first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 2093 are {4,6,9}, with first quotients (3/2,3/2), so 2093 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   30: {1,2,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A072774.
The version counting strict divisor chains is A169594.
For differences instead of quotients we have A325328 (count: A049988).
These partitions are counted by A342496 (strict: A342515, ordered: A342495).
The distinct instead of equal version is A342521.
A000005 count constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342086 counts strict chains of divisors with strictly increasing quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A309891 a(n) is the total number of trailing zeros in the representations of n over all bases b >= 2.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 6, 1, 3, 3, 8, 1, 6, 1, 6, 3, 3, 1, 9, 3, 3, 5, 6, 1, 7, 1, 10, 3, 3, 3, 11, 1, 3, 3, 9, 1, 7, 1, 6, 6, 3, 1, 13, 3, 6, 3, 6, 1, 9, 3, 9, 3, 3, 1, 12, 1, 3, 6, 14, 3, 7, 1, 6, 3, 7, 1, 15, 1, 3, 6, 6, 3, 7, 1, 13, 8, 3, 1, 12
Offset: 1

Views

Author

Rémy Sigrist, Aug 21 2019

Keywords

Comments

a(n) depends only on the prime signature of n.
a(n) is the sum of the k-adic valuations of n for k >= 2. - Friedjof Tellkamp, Jan 25 2025

Examples

			For n = 12: 12 has 2 trailing zeros in base 2 (1100), 1 trailing zero in bases 3, 4, 6 and 12 (110, 30, 20, 10) and no trailing zero in other bases, hence a(12) = 1*2 + 4*1 = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, IntegerExponent[n, #] &, # > 1 &], {n, 84}] (* Jon Maiga, Aug 25 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if (d>1, valuation(n,d), 0))
    
  • PARI
    a(n) = {if(n == 1, return(0)); my(f = factor(n)[, 2], res = 0, t = 2, of = f, nf = f >> 1, nd(v) = prod(i = 1, #v, v[i] + 1)); while(Set(of) != [0], res += (nd(of) - nd(nf)) * (t-1); of = nf; t++; nf = f \ t); res} \\ David A. Corneth, Aug 22 2019

Formula

a(n) = Sum_{d|n, d>1} A286561(n,d), where A286561 gives the d-valuation of n.
a(p) = 1 for any prime number p.
a(p^k) = A006218(k) for any k >= 0 and any prime number p.
a(n) = 2^A001221(n) - 1 for any squarefree number n.
a(n) = 3 for any semiprime number n.
a(m*n) >= a(m) + a(n).
a(n) >= A007814(n) + A007949(n) + A235127(n) + A112765(n) + A122841(n) + A214411(n) + A244413(n).
a(n) = A056239(A293514(n)). - Antti Karttunen, Aug 22 2019
a(n) <= A033093(n). - Michel Marcus, Aug 22 2019
a(n) = A169594(n) - 1. - Jon Maiga, Aug 25 2019
From Friedjof Tellkamp, Feb 27 2024: (Start)
G.f.: Sum_{k>=2, j>=1} x^(k^j)/(1-x^(k^j)).
Dirichlet g.f.: zeta(s) * Sum_{k>=1} (zeta(k*s) - 1).
Sum_{n>=1} a(n)/n^2 = Pi^2/8 (A111003). (End)

A342530 Number of strict chains of divisors ending with n and having distinct first quotients.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 6, 3, 6, 2, 12, 2, 6, 6, 9, 2, 12, 2, 12, 6, 6, 2, 28, 3, 6, 6, 12, 2, 26, 2, 14, 6, 6, 6, 31, 2, 6, 6, 28, 2, 26, 2, 12, 12, 6, 2, 52, 3, 12, 6, 12, 2, 28, 6, 28, 6, 6, 2, 66, 2, 6, 12, 25, 6, 26, 2, 12, 6, 26, 2, 76, 2, 6, 12, 12, 6, 26
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(12) = 12 chains (reversed):
  1  2    3    4    5    6      7    8      9    10      11    12
     2/1  3/1  4/1  5/1  6/1    7/1  8/1    9/1  10/1    11/1  12/1
               4/2       6/2         8/2    9/3  10/2          12/2
                         6/3         8/4         10/5          12/3
                         6/2/1       8/2/1       10/2/1        12/4
                         6/3/1       8/4/1       10/5/1        12/6
                                                               12/2/1
                                                               12/3/1
                                                               12/4/1
                                                               12/4/2
                                                               12/6/1
                                                               12/6/2
Not counted under a(12) are: 12/4/2/1, 12/6/2/1, 12/6/3, 12/6/3/1.
		

Crossrefs

The version for weakly increasing first quotients is A057567.
The version for equal first quotients is A169594.
The case of chains starting with 1 is A254578.
The version for strictly increasing first quotients is A342086.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A067824 counts strict chains of divisors ending with n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A334997 counts chains of divisors of n by length.
A342495/A342529 count compositions with equal/distinct quotients.
A342496/A342514 count partitions with equal/distinct quotients.
A342515/A342520 count strict partitions with equal/distinct quotients.
A342522/A342521 rank partitions with equal/distinct quotients.

Programs

  • Mathematica
    cmi[n_]:=Prepend[Prepend[#,n]&/@Join@@cmi/@Most[Divisors[n]],{n}];
    Table[Length[Select[cmi[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,100}]

Formula

a(n) = Sum_{d|n} A254578(d). - Ridouane Oudra, Jun 17 2025
Showing 1-10 of 18 results. Next