A179260 Decimal expansion of the connective constant of the honeycomb lattice.
1, 8, 4, 7, 7, 5, 9, 0, 6, 5, 0, 2, 2, 5, 7, 3, 5, 1, 2, 2, 5, 6, 3, 6, 6, 3, 7, 8, 7, 9, 3, 5, 7, 6, 5, 7, 3, 6, 4, 4, 8, 3, 3, 2, 5, 1, 7, 2, 7, 2, 8, 4, 9, 7, 2, 2, 3, 0, 1, 9, 5, 4, 6, 2, 5, 6, 1, 0, 7, 0, 0, 1, 5, 0, 0, 2, 2, 0, 4, 7, 1, 7, 4, 2, 9, 6, 7, 9, 8, 6, 9, 7, 0, 0, 6, 8, 9, 1, 9, 2
Offset: 1
Examples
1.84775906502257351225636637879357657364483325172728497223019546256107001500...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.10, p. 333.
- Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
- Neal Madras and Gordon Slade, Self-avoiding walks, Probability and its Applications, Birkhäuser Boston, Inc. Boston, MA, 1993.
Links
- Hugo Duminil-Copin and Stanislav Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt2), arXiv:1007.0575 [math-ph], 2011.
- Hugo Duminil-Copin and Stanislav Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt2), Ann. Math. 175 (2012), pp. 1653-1665.
- Steven Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 5.10; arXiv:2001.00578 [math.HO], 2020.
- Pierre-Louis Giscard, Que sait-on compter sur un graphe. Partie 3 (in French), Images des Mathématiques, CNRS, 2020.
- Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On the scaling limit of planar self-avoiding walk, Fractal Geometry and applications: a jubilee of Benoit Mandelbrot, Part 2, 339-364. Proc.
- Bernard Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions, Phys. Rev. Lett. 49 (1982), 1062-1065.
- Jonathan Sondow and Huang Yi, New Wallis- and Catalan-type infinite products for Pi, e, and sqrt(2+sqrt(2)), arXiv:1005.2712 [math.NT], 2010.
- Jonathan Sondow and Huang Yi, New Wallis- and Catalan-type infinite products for Pi, e, and sqrt(2+sqrt(2)), Amer. Math. Monthly 117 (2010) 912-917.
- Index entries for algebraic numbers, degree 4.
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
RealDigits[Sqrt[2+Sqrt[2]],10,120][[1]] (* Harvey P. Dale, Jan 19 2014 *)
-
PARI
sqrt(2+sqrt(2)) \\ Charles R Greathouse IV, Nov 05 2014
Formula
sqrt(2+sqrt(2)) = (2/1)(6/7)(10/9)(14/15)(18/17)(22/23)... (see Sondow-Yi 2010).
Equals 1/A154739. - R. J. Mathar, Jul 11 2010
Equals 2*A144981. - Paul Muljadi, Aug 23 2010
log (A001668(n)) ~ n log k where k = sqrt(2+sqrt(2)). - Charles R Greathouse IV, Nov 08 2013
2*cos(Pi/8) = sqrt(2+sqrt(2)). See a remark on the smallest diagonal in the octagon above. - Wolfdieter Lang, May 11 2017
Equals also 2*sin(3*Pi/8). See the comment on van Roomen's third problem above. - Wolfdieter Lang, Apr 29 2018
Equals i^(1/4) + i^(-1/4). - Gary W. Adamson, Jul 06 2022
Equals Product_{k>=0} ((8*k + 2)*(8*k + 6))/((8*k + 1)*(8*k + 7)). - Antonio Graciá Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A047522(k)). - Amiram Eldar, Nov 22 2024
Comments