cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179282 Numbers n such that 2^n-2 and 2^n+2 are not squarefree.

Original entry on oeis.org

1, 22, 31, 64, 79, 91, 106, 111, 148, 151, 190, 205, 211, 232, 235, 271, 274, 311, 316, 331, 341, 358, 391, 400, 442, 451, 466, 484, 511, 526, 547, 551, 568, 571, 610, 613, 631, 652, 658, 667, 691, 694, 703, 736, 751, 760, 771, 778, 811, 820, 859, 862, 871, 904
Offset: 1

Views

Author

Keywords

Comments

Most (not all) of the terms are of the form:
x^2-y^2, for x>y>0.
31=16^2-15^2,
64=10^2-6^2=17^2-15^2,
79=40^2-39^2,
91=10^2-3^2=46^2-45^2,
111=20^2-17^2=56^2-55^2,
148=11^2-3^3=38^2-36^2,
151=76^2-75^2,
205=23^2-18^2=103^2-102^2,
211=106^2-105^2.

Examples

			2^22-2=2*7^2*127*337, 2^22+2=2*3^2*43*5419.
		

Crossrefs

Cf. A005117, A000918 (2^n-2), A052548 (2^n+2).

Programs

  • Mathematica
    Select[Range@211,!(SquareFreeQ[2^#-2]||SquareFreeQ[2^#+2])&]
  • PARI
    isok(n) = !issquarefree(2^n-2) && !issquarefree(2^n+2); \\ Michel Marcus, Oct 04 2019

Extensions

a(14)-a(30) from D. S. McNeil, Mar 23 2011
a(31)-a(54) from Amiram Eldar, Oct 04 2019