cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179525 G.f.: A(x) = Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1).

Original entry on oeis.org

1, 1, 2, 7, 33, 197, 1419, 11966, 115575, 1257718, 15223822, 202860828, 2950665011, 46516215168, 790009447590, 14379745626739, 279256447482090, 5763290215111558, 125960271446527241, 2906289188751628643, 70594767279197608011, 1800695322331687800336, 48122711251655255426539, 1344617808976210991187090, 39206731897407002624384182, 1190905492485213830900901986
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2010

Keywords

Comments

From Vít Jelínek, Feb 12 2012: (Start)
a(n) has the following combinatorial interpretations:
(1) the number of upper-triangular matrices over {0,1} having at least one '1'-entry in each row and having n '1'-entries in total. E.g., for n=2, this corresponds to these two matrices (with zeros represented as dots):
1. .1
.1 .1
(2) the number of upper-triangular matrices over {0,1} that are symmetric with respect to the northeast diagonal, have at least one '1'-entry in each row and column, have no '1'-entry on the northeast diagonal, and have 2n '1'-entries in total. For n=2, those are the two matrices
11. 1...
..1 .1..
..1 ..1.
...1
(3) the number of upper-triangular matrices over {0,1} that are symmetric with respect to the northeast diagonal, have at least one '1'-entry in each row and column, have at least one '1'-entry on the northeast diagonal, and have n '1'-entries on or above the northeast diagonal. For n=2, this corresponds to
11 1..
.1 .1.
..1
(End)
This is an example of Peter Bala's identity (cf. A158690):
Sum_{n>=0} Product_{k=1..n} (q^k - 1) = Sum_{n>=0} q^(-n^2) * Product_{k = 1..n} (q^(2*k-1) - 1) at q = 1 + x. See cross-references for other examples.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 33*x^4 + 197*x^5 + 1419*x^6 +...
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1) + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1) +...
Let q = 1+x, then g.f. also equals:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
		

Crossrefs

Cf. A207434 (log).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ Product[ (1 + x)^j - 1, {j, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • PARI
    {a(n) = polcoeff(sum(i=0, n, prod(j=1, i, (1+x)^j-1, 1+x*O(x^n))), n)};
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. as a continued fraction: */
    {a(n) = local(CF=1+x*O(x)); for(k=0, n, CF=1/((1+x)^(n-k+1)-((1+x)^(n-k+2)-1)*CF)); polcoeff(1/(1-x*CF), n, x)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1+x, q=(1+x +x*O(x^n))); A = sum(m=0, n, q^(-m^2)*prod(k=1, m, (q^(2*k-1)-1))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Sum_{n>=0} n!*Product_{k=0..n-1} [Integral (1+x)^k dx] */
    {a(n) = my(A=1); A = sum(m=0,n, m! * prod(k=0,m-1, intformal((1+x)^k) +x*O(x^n)) );polcoeff(A,n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 16 2016

Formula

G.f.: 1/(1 - ((1+x)-1)/((1+x) - ((1+x)^2-1)/((1+x)^2 - ((1+x)^3-1)/((1+x)^3 - ((1+x)^4-1)/((1+x)^4 - ((1+x)^5-1)/((1+x)^5 -...)))))), (continued fraction) [Paul D. Hanna, Jan 29 2012]
G.f.: Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1) where q = 1+x. [Based on Peter Bala's identity in comments]
Conjecturally, a(n) is asymptotically c*n!*(12/Pi^2)^n, where c=6*sqrt(2)*exp(-Pi^2/24)/Pi^2. - Vít Jelínek, Feb 12 2012 [This is correct: see Hwang and Jin, Table 3, p. 26. - Peter Bala, Jan 31 2021]
G.f.: Q(0), where Q(k)= 1 - (1-(1+x)^(2*k+1))/(1 - (1-(1+x)^(2*k+2))/(1 - (1+x)^(2*k+2) - 1/Q(k+1))); (continued fraction). Conjecture. - Sergei N. Gladkovskii, May 13 2013
From Peter Bala, May 16 2017: (Start)
G.f.: A(x) = 1/2*( 1 + Sum_{n >= 0} (1 + x)^(n+1)*Product_{k = 1..n} ((1 + x)^k - 1) ).
Conjectural g.f.: Sum_{n >= 0} 1/(1 + x)^(n+1)*Product_{k = 1..n} (1 - 1/(1 + x)^(2*k)).
Conjectural g.f.: Sum_{n >= 0} (1 + x)^(2*n+1)*Product_{k = 1..2*n} (1 - (1 + x)^k). Cf. A158690, which has e.g.f. A(exp(x) - 1). (End)