A158691
The number of upper-triangular matrices with at least one nonzero entry in each row and whose entries sum to n.
Original entry on oeis.org
1, 1, 3, 12, 61, 380, 2815, 24213, 237348, 2612681, 31915787, 428481472, 6271362282, 99388642292, 1695614865711, 30984649882928, 603790447393402, 12498732438500663, 273902239550757626, 6334968666307580051, 154211723833861061644, 3941258052200287007636
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 61*x^4 + 380*x^5 + 2815*x^6 +...
- Seiichi Manyama, Table of n, a(n) for n = 0..200
- George E. Andrews, Vít Jelínek, On q-Series Identities Related to Interval Orders, arXiv:1309.6669 [math.CO], 2013.
- George E. Andrews, Vít Jelínek, On q-Series Identities Related to Interval Orders, European Journal of Combinatorics, Volume 39, July 2014, 178-187.
- Kathrin Bringmann, Yingkun Li, Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, Volume 41, October 2014, Pages 183-196; preprint.
- Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- Florian Ingels, Romain Azaïs, Enumeration of Unordered Forests, arXiv:2003.08144 [cs.DM], 2020.
- Vít Jelínek, Counting self-dual interval orders, arXiv:1106.2261 [math.CO], 2011.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614.
- Sherry H. F. Yan and Yuexiao Xu, Self-dual interval orders and row-Fishburn matrices, arXiv:1111.4723 [math.CO], 2011.
- Sherry H. F. Yan and Yuexiao Xu, Self-dual interval orders and row-Fishburn matrices, Electronic Journal of Combinatorics, 19(2):P5 (2012).
-
g:=sum(product(1-(1-x)^(2*i-1), i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19); # by definition
g:=sum((-1)^n*product(1-1/(1-x)^i, i= 1..n), n = 0..20): gser:=series(g, x = 0,20): seq(coeff(gser, x, n), n = 0..19);
-
a[ n_] := SeriesCoefficient[ Sum[ Product[ 1 - (1 - x)^(2 i - 1), {i, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
-
{a(n)=polcoeff(sum(m=0, n, prod(k=1, m, 1/(1-x)^k-1, 1+x*O(x^n))), n)} /* Paul D. Hanna, Jan 29 2012 */
-
/* G.f. as a Continued Fraction: */
{a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1/(1 - (1-x)^(n-k+1)*(1-(1-x)^(n-k+2))*CF)); polcoeff(1/(1-x*CF), n, x)} /* Paul D. Hanna, Jan 29 2012 */
A207386
G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1+x)/(1+x^3).
Original entry on oeis.org
1, 1, 2, 6, 28, 172, 1269, 10879, 106343, 1167970, 14241792, 190919195, 2790920003, 44184957237, 753152722642, 13752229833566, 267809474619299, 5540559819166056, 121355678158129804, 2805498395990301867, 68265999939081386947, 1744058001878302097109
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 28*x^4 + 172*x^5 + 1269*x^6 +...
Let q = (1+x)/(1+x^3) = 1/(1-x+x^2), then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
which also is proposed to equal:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
-
{a(n)=local(A=1+x,q=(1+x)/(1+x^3 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
-
{a(n)=local(A=1+x,q=(1+x)/(1+x^3 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
for(n=0,21,print1(a(n),", "))
A207569
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1).
Original entry on oeis.org
1, 1, 3, 18, 151, 1640, 21825, 343763, 6253234, 128993019, 2975165831, 75866604098, 2119310099700, 64361149952242, 2111222815441491, 74391641880144734, 2802300974537717340, 112379709083552152423, 4780136025081921948194, 214954914688567198802759
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 151*x^4 + 1640*x^5 + 21825*x^6 + ...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^3-1) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)*((1+x)^7-1) + ...
-
CoefficientList[Series[Sum[Product[(1+x)^(2*k-1)-1, {k, 1, n}], {n, 0, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, May 06 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,(1+x)^(2*k-1)-1) +x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
A207397
G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1+x)/(1+x^2).
Original entry on oeis.org
1, 1, 1, 2, 11, 74, 557, 4799, 47004, 516717, 6302993, 84502346, 1235198136, 19552296646, 333212892221, 6083009119262, 118433569748072, 2449663066933397, 53643715882853914, 1239875630317731463, 30163779836127304106, 770476745704778418686
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 11*x^4 + 74*x^5 + 557*x^6 + 4799*x^7 +...
Let q = (1+x)/(1+x^2), then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
which also is proposed to equal:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
-
{a(n)=local(A=1+x,q=(1+x)/(1+x^2 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
-
{a(n)=local(A=1+x,q=(1+x)/(1+x^2 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A207433
G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1-x^3)/(1-x).
Original entry on oeis.org
1, 1, 3, 11, 56, 350, 2609, 22582, 222625, 2462969, 30219676, 407276420, 5981197376, 95073427910, 1626294895274, 29788176027819, 581704672430937, 12064521684969823, 264843222932272690, 6135057298705027024, 149559103545555671423, 3827360866024134614644
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 56*x^4 + 350*x^5 + 2609*x^6 +...
Let q = (1-x^3)/(1-x) = 1 + x + x^2, then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
Also, we have the identity:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
From _Peter Bala_, Nov 05 2017: (Start)
a(3) = 11: The eleven row Fishburn matrices of size 3 with entries in {0,1,2} are
/1 0\ /2 0\ /0 1\ /0 2\ /1 1\
\0 2/ \0 1/ \0 2/ \0 1/ \0 1/
and
/1 0 0\ /0 1 0\ /0 0 1\ /1 0 0\ /0 1 0\ /0 0 1\
|0 1 0| |0 1 0| |0 0 1| |0 0 1| |0 0 1| |0 0 1|.
\0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/
(End)
-
{a(n)=local(A=1+x,q=(1+x+x^2 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
-
{a(n)=local(A=1+x,q=(1+x+x^2 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A207556
G.f.: Sum_{n>=0} (1+x)^n * Product_{k=1..n} ((1+x)^k - 1).
Original entry on oeis.org
1, 1, 3, 11, 55, 339, 2499, 21433, 209717, 2305719, 28141925, 377579731, 5523750291, 87508680045, 1492510215135, 27266981038343, 531245913925837, 10995334516297279, 240925208376757203, 5571653169126500083, 135617881389268715939, 3465772763274106884733
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 55*x^4 + 339*x^5 + 2499*x^6 +...
such that, by definition,
A(x) = 1 + (1+x)*((1+x)-1) + (1+x)^2*((1+x)-1)*((1+x)^2-1) + (1+x)^3*((1+x)-1)*((1+x)^2-1)*((1+x)^3-1) + (1+x)^4*((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)*((1+x)^4-1) +...
-
{a(n)=polcoeff(sum(m=0,n,(1+x)^m*prod(k=1,m,(1+x)^k-1) +x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
A289313
The number of upper-triangular matrices with integer entries whose absolute sum is equal to n and such that each row contains a nonzero entry.
Original entry on oeis.org
1, 2, 10, 74, 722, 8786, 128218, 2182554, 42456226, 929093538, 22590839466, 604225121258, 17630145814898, 557285515817970, 18970857530674554, 691929648113663802, 26919562120779248962, 1112769248605003393858, 48704349211392743606602
Offset: 0
a(2) = 10: The ten generalized row-Fishburn matrices of size 2 are
(+-2),
/+-1 0\ and /0 +-1\
| | | |
\0 +-1/ \0 +-1/.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
-
G:= add(mul( ((1 + x)/(1 - x))^i - 1, i=1..n),n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
# Peter Bala, Jul 24 2017
A207557
G.f.: Sum_{n>=0} 1/(1+x)^(n^2-n) * Product_{k=1..n} ((1+x)^(2*k-1) - 1).
Original entry on oeis.org
1, 1, 3, 12, 64, 420, 3276, 29581, 303389, 3483053, 44245695, 616103046, 9330961666, 152700926414, 2685132170466, 50488787588936, 1010864433071206, 21470488933116138, 482176661100286182, 11415700804801064258, 284169548252819022230, 7419733139418740010570
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 64*x^4 + 420*x^5 + 3276*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^3-1)/(1+x)^2 + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)/(1+x)^6 + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)*((1+x)^7-1)/(1+x)^20 +...
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,(1+x)^(2*k-1)-1)/(1+x+x*O(x^n))^(m^2-m) ),n)}
for(n=0,25,print1(a(n),", "))
A207570
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(3*k-2) - 1).
Original entry on oeis.org
1, 1, 4, 34, 410, 6455, 125251, 2888305, 77157780, 2342972405, 79701049425, 3002132647515, 124039845584382, 5577660227565634, 271162541308698623, 14172237715785139175, 792418822364402364530, 47198077739119663907870, 2983413619934353599892285
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 34*x^3 + 410*x^4 + 6455*x^5 + 125251*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^4-1) + ((1+x)-1)*((1+x)^4-1)*((1+x)^7-1) + ((1+x)-1)*((1+x)^4-1)*((1+x)^7-1)*((1+x)^10-1) +...
-
Join[{1},Rest[With[{nn=20},CoefficientList[Series[Sum[Product[ (1+x)^(3k-2)-1,{k,n}],{n,nn}],{x,0,nn}],x]]]] (* Harvey P. Dale, Aug 20 2012 *)
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,(1+x)^(3*k-2)-1) +x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
A207571
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(3*k-1) - 1).
Original entry on oeis.org
1, 2, 11, 105, 1390, 23520, 484247, 11742927, 327711230, 10343198878, 364237027076, 14156867852699, 601927703437645, 27790427952836499, 1384496764982434033, 74027620787319243688, 4228343290201028904807, 256946673653717460509502, 16551666142815138743519611
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 105*x^3 + 1390*x^4 + 23520*x^5 + 484247*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)^2-1) + ((1+x)^2-1)*((1+x)^5-1) + ((1+x)^2-1)*((1+x)^5-1)*((1+x)^8-1) + ((1+x)^2-1)*((1+x)^5-1)*((1+x)^8-1)*((1+x)^11-1) +...
-
CoefficientList[Series[Sum[Product[(1+x)^(3*k-1)-1, {k, 1, n}], {n, 0, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, May 06 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,(1+x)^(3*k-1)-1) +x*O(x^n)),n)}
for(n=0,25,print1(a(n),", "))
Showing 1-10 of 15 results.
Comments