cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A179525 G.f.: A(x) = Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1).

Original entry on oeis.org

1, 1, 2, 7, 33, 197, 1419, 11966, 115575, 1257718, 15223822, 202860828, 2950665011, 46516215168, 790009447590, 14379745626739, 279256447482090, 5763290215111558, 125960271446527241, 2906289188751628643, 70594767279197608011, 1800695322331687800336, 48122711251655255426539, 1344617808976210991187090, 39206731897407002624384182, 1190905492485213830900901986
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2010

Keywords

Comments

From Vít Jelínek, Feb 12 2012: (Start)
a(n) has the following combinatorial interpretations:
(1) the number of upper-triangular matrices over {0,1} having at least one '1'-entry in each row and having n '1'-entries in total. E.g., for n=2, this corresponds to these two matrices (with zeros represented as dots):
1. .1
.1 .1
(2) the number of upper-triangular matrices over {0,1} that are symmetric with respect to the northeast diagonal, have at least one '1'-entry in each row and column, have no '1'-entry on the northeast diagonal, and have 2n '1'-entries in total. For n=2, those are the two matrices
11. 1...
..1 .1..
..1 ..1.
...1
(3) the number of upper-triangular matrices over {0,1} that are symmetric with respect to the northeast diagonal, have at least one '1'-entry in each row and column, have at least one '1'-entry on the northeast diagonal, and have n '1'-entries on or above the northeast diagonal. For n=2, this corresponds to
11 1..
.1 .1.
..1
(End)
This is an example of Peter Bala's identity (cf. A158690):
Sum_{n>=0} Product_{k=1..n} (q^k - 1) = Sum_{n>=0} q^(-n^2) * Product_{k = 1..n} (q^(2*k-1) - 1) at q = 1 + x. See cross-references for other examples.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 33*x^4 + 197*x^5 + 1419*x^6 +...
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^2-1) + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1) +...
Let q = 1+x, then g.f. also equals:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
		

Crossrefs

Cf. A207434 (log).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Sum[ Product[ (1 + x)^j - 1, {j, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • PARI
    {a(n) = polcoeff(sum(i=0, n, prod(j=1, i, (1+x)^j-1, 1+x*O(x^n))), n)};
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. as a continued fraction: */
    {a(n) = local(CF=1+x*O(x)); for(k=0, n, CF=1/((1+x)^(n-k+1)-((1+x)^(n-k+2)-1)*CF)); polcoeff(1/(1-x*CF), n, x)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1+x, q=(1+x +x*O(x^n))); A = sum(m=0, n, q^(-m^2)*prod(k=1, m, (q^(2*k-1)-1))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Sum_{n>=0} n!*Product_{k=0..n-1} [Integral (1+x)^k dx] */
    {a(n) = my(A=1); A = sum(m=0,n, m! * prod(k=0,m-1, intformal((1+x)^k) +x*O(x^n)) );polcoeff(A,n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 16 2016

Formula

G.f.: 1/(1 - ((1+x)-1)/((1+x) - ((1+x)^2-1)/((1+x)^2 - ((1+x)^3-1)/((1+x)^3 - ((1+x)^4-1)/((1+x)^4 - ((1+x)^5-1)/((1+x)^5 -...)))))), (continued fraction) [Paul D. Hanna, Jan 29 2012]
G.f.: Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1) where q = 1+x. [Based on Peter Bala's identity in comments]
Conjecturally, a(n) is asymptotically c*n!*(12/Pi^2)^n, where c=6*sqrt(2)*exp(-Pi^2/24)/Pi^2. - Vít Jelínek, Feb 12 2012 [This is correct: see Hwang and Jin, Table 3, p. 26. - Peter Bala, Jan 31 2021]
G.f.: Q(0), where Q(k)= 1 - (1-(1+x)^(2*k+1))/(1 - (1-(1+x)^(2*k+2))/(1 - (1+x)^(2*k+2) - 1/Q(k+1))); (continued fraction). Conjecture. - Sergei N. Gladkovskii, May 13 2013
From Peter Bala, May 16 2017: (Start)
G.f.: A(x) = 1/2*( 1 + Sum_{n >= 0} (1 + x)^(n+1)*Product_{k = 1..n} ((1 + x)^k - 1) ).
Conjectural g.f.: Sum_{n >= 0} 1/(1 + x)^(n+1)*Product_{k = 1..n} (1 - 1/(1 + x)^(2*k)).
Conjectural g.f.: Sum_{n >= 0} (1 + x)^(2*n+1)*Product_{k = 1..2*n} (1 - (1 + x)^k). Cf. A158690, which has e.g.f. A(exp(x) - 1). (End)

A207397 G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1+x)/(1+x^2).

Original entry on oeis.org

1, 1, 1, 2, 11, 74, 557, 4799, 47004, 516717, 6302993, 84502346, 1235198136, 19552296646, 333212892221, 6083009119262, 118433569748072, 2449663066933397, 53643715882853914, 1239875630317731463, 30163779836127304106, 770476745704778418686
Offset: 0

Views

Author

Paul D. Hanna, Feb 17 2012

Keywords

Comments

Motivated by Peter Bala's identity described in A158690:
Sum_{n>=0} Product_{k=1..n} (q^k - 1) =
Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1),
here q = (1+x)/(1+x^2). See cross-references for other examples.
At present Bala's identity is conjectural and needs formal proof.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 11*x^4 + 74*x^5 + 557*x^6 + 4799*x^7 +...
Let q = (1+x)/(1+x^2), then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
which also is proposed to equal:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,q=(1+x)/(1+x^2 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x,q=(1+x)/(1+x^2 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1) where q = (1+x)/(1+x^2). [Based on Peter Bala's conjecture in A158690]
a(n) ~ c * 12^n * n! / Pi^(2*n), where c = 6*sqrt(2) / (Pi^2 * exp(Pi^2/8)) = 0.250367043877216848533826021231826... . - Vaclav Kotesovec, May 06 2014, updated Aug 22 2017

A207433 G.f.: Sum_{n>=0} Product_{k=1..n} (q^k - 1) where q = (1-x^3)/(1-x).

Original entry on oeis.org

1, 1, 3, 11, 56, 350, 2609, 22582, 222625, 2462969, 30219676, 407276420, 5981197376, 95073427910, 1626294895274, 29788176027819, 581704672430937, 12064521684969823, 264843222932272690, 6135057298705027024, 149559103545555671423, 3827360866024134614644
Offset: 0

Views

Author

Paul D. Hanna, Feb 17 2012

Keywords

Comments

Motivated by Peter Bala's identity described in A158690:
Sum_{n>=0} Product_{k=1..n} (q^k - 1) =
Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1),
here q = (1+x)/(1+x^2). See cross-references for other examples.
At present Bala's identity is conjectural and needs formal proof.
a(n) = number of upper triangular matrices with entries from {0,1,2} with no zero rows such that the sum of the entries is n, that is, row Fishburn matrices of size n with entries from {0,1,2}. Cf. A179525. - Peter Bala, Nov 05 2017

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 56*x^4 + 350*x^5 + 2609*x^6 +...
Let q = (1-x^3)/(1-x) = 1 + x + x^2, then
A(x) = 1 + (q-1) + (q-1)*(q^2-1) + (q-1)*(q^2-1)*(q^3-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1) + (q-1)*(q^2-1)*(q^3-1)*(q^4-1)*(q^5-1) +...
Also, we have the identity:
A(x) = 1 + (q-1)/q + (q-1)*(q^3-1)/q^4 + (q-1)*(q^3-1)*(q^5-1)/q^9 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)/q^16 + (q-1)*(q^3-1)*(q^5-1)*(q^7-1)*(q^9-1)/q^25 +...
From _Peter Bala_, Nov 05 2017: (Start)
a(3) = 11: The eleven row Fishburn matrices of size 3 with entries in {0,1,2} are
/1 0\ /2 0\ /0 1\ /0 2\ /1 1\
\0 2/ \0 1/ \0 2/ \0 1/ \0 1/
and
/1 0 0\ /0 1 0\ /0 0 1\ /1 0 0\ /0 1 0\ /0 0 1\
|0 1 0| |0 1 0| |0 0 1| |0 0 1| |0 0 1| |0 0 1|.
\0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/ \0 0 1/
(End)
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x,q=(1+x+x^2 +x*O(x^n))); A=sum(m=0,n,prod(k=1,m,(q^k-1)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x,q=(1+x+x^2 +x*O(x^n))); A=sum(m=0,n,q^(-m^2)*prod(k=1,m,(q^(2*k-1)-1)));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} q^(-n^2) * Product_{k=1..n} (q^(2*k-1) - 1) where q = (1-x^3)/(1-x). [Based on Peter Bala's conjecture in A158690]
a(n) ~ exp(Pi^2/24) * 2^(2*n+3/2) * 3^(n+1) * n! / Pi^(2*n+2). - Vaclav Kotesovec, Aug 22 2017

A207384 A206815(n+1)-A206815(n).

Original entry on oeis.org

1, 3, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 2, 1, 3, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2012

Keywords

Comments

The sequences A206815, A206818, A207384, A207835 illustrate the closeness of {j+pi(j)} to {k+(k+1)/log(k+1)}, as suggested by the prime number theorem and the conjecture that all the terms of A207384 and A207835 are in the set {1,2,3}.

Examples

			The joint ranking is represented by
1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ...
Positions of numbers j+pi(j): 1,2,5,7,9,...
Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,..
		

Crossrefs

Programs

  • Mathematica
    f[1, n_] := n + PrimePi[n];
    f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500;
    t[k_] := Table[f[k, n], {n, 1, z}];
    t = Sort[Union[t[1], t[2]]];
    p[k_, n_] := Position[t, f[k, n]];
    Flatten[Table[p[1, n], {n, 1, z}]]    (* A206815 *)
    Flatten[Table[p[2, n], {n, 1, z}]]    (* A206818 *)
    d1[n_] := p[1, n + 1] - p[1, n]
    Flatten[Table[d1[n], {n, 1, z - 1}]]  (* A207385 *)
    d2[n_] := p[2, n + 1] - p[2, n]
    Flatten[Table[d2[n], {n, 1, z - 1}]]  (* A207386 *)

A207385 A206818(n+1)-A206818(n).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2012

Keywords

Comments

The sequences A206815, A206818, A207384, A207835 illustrate the closeness of {j+pi(j)} to {k+(k+1)/log(k+1)}, as suggested by the prime number theorem and the conjecture that all the terms of A207384 and A207835 are in the set {1,2,3}.

Examples

			The joint ranking is represented by
1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ...
Positions of numbers j+pi(j): 1,2,5,7,9,...
Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,..
		

Crossrefs

Programs

  • Mathematica
    f[1, n_] := n + PrimePi[n];
    f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500;
    t[k_] := Table[f[k, n], {n, 1, z}];
    t = Sort[Union[t[1], t[2]]];
    p[k_, n_] := Position[t, f[k, n]];
    Flatten[Table[p[1, n], {n, 1, z}]]    (* A206815 *)
    Flatten[Table[p[2, n], {n, 1, z}]]    (* A206818 *)
    d1[n_] := p[1, n + 1] - p[1, n]
    Flatten[Table[d1[n], {n, 1, z - 1}]]  (* A207385 *)
    d2[n_] := p[2, n + 1] - p[2, n]
    Flatten[Table[d2[n], {n, 1, z - 1}]]  (* A207386 *)
Showing 1-5 of 5 results.