A179550 Primes p such that p plus or minus the sum of its digits squared yields a prime in both cases.
13, 127, 457, 1429, 1553, 1621, 2273, 2341, 2837, 4129, 4231, 4561, 4813, 5119, 5519, 5531, 6121, 6451, 6547, 8161, 8167, 8219, 8237, 8783, 8819, 8831, 8941, 9511, 10267, 10559, 11299, 11383, 12809, 13183, 15091, 15569, 16573, 17569, 17659, 18133
Offset: 1
Examples
a(5)=1553 since 1553+(1^2+5^2+5^2+3^2)=1553+60=1613 is a prime AND 1553-(1^2+5^2+5^2+3^2)=1553-60=1493 is a prime again.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(p) local t,r; if not isprime(p) then return false fi; r:= add(t^2, t=convert(p,base,10)); isprime(p+r) and isprime(p-r); end proc: select(filter, [seq(i,i=3..20000,2)]); # Robert Israel, Mar 30 2021
-
Mathematica
Select[Prime[Range[2100]],AllTrue[#+{Total[IntegerDigits[#]^2],-Total[ IntegerDigits[ #]^2]},PrimeQ]&] (* Harvey P. Dale, Aug 07 2021 *)
-
PARI
sumdd(n) = {digs = digits(n, 10); return (sum(i=1, #digs, digs[i]^2));} lista(nn) = {forprime(p=2, nn, s = sumdd(p); if (isprime(p+s) && isprime(p-s), print1(p, ", ")););} \\ Michel Marcus, Jul 25 2013
-
Python
from sympy import isprime, primerange def sumdd(n): return sum(int(d)**2 for d in str(n)) def list(nn): for p in primerange(2, nn+1): s = sumdd(p) if isprime(p-s) and isprime(p+s): print(p, end=", ") list(18133) # Michael S. Branicky, Mar 30 2021 after Michel Marcus