A179666 Products of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3).
432, 648, 2000, 5000, 5488, 10125, 16875, 19208, 21296, 27783, 35152, 64827, 78608, 107811, 109744, 117128, 177957, 194672, 214375, 228488, 300125, 390224, 395307, 397953, 476656, 555579, 668168, 771147, 810448, 831875
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, List of Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={3,4}; Select[Range[10^6], f] With[{nn=40},Select[Flatten[{#[[1]]^4 #[[2]]^3,#[[1]]^3 #[[2]]^4}&/@ Subsets[ Prime[Range[nn]],{2}]]//Union,#<=16nn^3&]] (* Harvey P. Dale, Nov 15 2020 *)
-
PARI
list(lim)=my(v=List(),t);forprime(p=2,(lim\8)^(1/4),t=p^4;forprime(q=2,(lim\t)^(1/3),if(p==q,next);listput(v,t*q^3)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from sympy import primepi, integer_nthroot, primerange def A179666(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(integer_nthroot(x//p**4,3)[0]) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,7)[0]) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025
Formula
Sum_{n>=1} 1/a(n) = P(3)*P(4) - P(7) = A085541 * A085964 - A085967 = 0.005171..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020