cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A101296 n has the a(n)-th distinct prime signature.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 13, 2, 4, 6, 14, 4, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 4, 9, 2, 12, 7, 4, 2, 13, 4, 4, 4, 8, 2, 13, 4, 6, 4, 4, 4, 16, 2, 6, 6, 11, 2, 9, 2, 8, 9, 4, 2, 15, 2, 9, 4, 12, 2, 9, 4, 6, 6, 4, 4, 17
Offset: 1

Views

Author

David Wasserman, Dec 21 2004

Keywords

Comments

From Antti Karttunen, May 12 2017: (Start)
Restricted growth sequence transform of A046523, the least representative of each prime signature. Thus this partitions the natural numbers to the same equivalence classes as A046523, i.e., for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j), and for that reason satisfies in that respect all the same conditions as A046523. For example, we have, for all i, j: if a(i) = a(j), then:
A000005(i) = A000005(j), A008683(i) = A008683(j), A286605(i) = A286605(j).
So, this sequence (instead of A046523) can be used for finding sequences where a(n)'s value is dependent only on the prime signature of n, that is, only on the multiset of prime exponents in the factorization of n. (End)
This is also the restricted growth sequence transform of many other sequences, for example, that of A181819. See further comments there. - Antti Karttunen, Apr 30 2022

Examples

			From _David A. Corneth_, May 12 2017: (Start)
1 has prime signature (), the first distinct prime signature. Therefore, a(1) = 1.
2 has prime signature (1), the second distinct prime signature after (1). Therefore, a(2) = 2.
3 has prime signature (1), as does 2. Therefore, a(3) = a(2) = 2.
4 has prime signature (2), the third distinct prime signature after () and (1). Therefore, a(4) = 3. (End)
From _Antti Karttunen_, May 12 2017: (Start)
Construction of restricted growth sequences: In this case we start with a(1) = 1 for A046523(1) = 1, and thereafter, for all n > 1, we use the least so far unused natural number k for a(n) if A046523(n) has not been encountered before, otherwise [whenever A046523(n) = A046523(m), for some m < n], we set a(n) = a(m).
For n = 2, A046523(2) = 2, which has not been encountered before (first prime), thus we allot for a(2) the least so far unused number, which is 2, thus a(2) = 2.
For n = 3, A046523(2) = 2, which was already encountered as A046523(1), thus we set a(3) = a(2) = 2.
For n = 4, A046523(4) = 4, not encountered before (first square of prime), thus we allot for a(4) the least so far unused number, which is 3, thus a(4) = 3.
For n = 5, A046523(5) = 2, as for the first time encountered at n = 2, thus we set a(5) = a(2) = 2.
For n = 6, A046523(6) = 6, not encountered before (first semiprime pq with distinct p and q), thus we allot for a(6) the least so far unused number, which is 4, thus a(6) = 4.
For n = 8, A046523(8) = 8, not encountered before (first cube of a prime), thus we allot for a(8) the least so far unused number, which is 5, thus a(8) = 5.
For n = 9, A046523(9) = 4, as for the first time encountered at n = 4, thus a(9) = 3.
(End)
From _David A. Corneth_, May 12 2017: (Start)
(Rough) description of an algorithm of computing the sequence:
Suppose we want to compute a(n) for n in [1..20].
We set up a vector of 20 elements, values 0, and a number m = 1, the minimum number we haven't checked and c = 0, the number of distinct prime signatures we've found so far.
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We check the prime signature of m and see that it's (). We increase c with 1 and set all elements up to 20 with prime signature () to 1. In the process, we adjust m. This gives:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The least number we haven't checked is m = 2. 2 has prime signature (1). We increase c with 1 and set all elements up to 20 with prime signature (1) to 2. In the process, we adjust m. This gives:
[1, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
We check the prime signature of m = 4 and see that its prime signature is (2). We increase c with 1 and set all numbers up to 20 with prime signature (2) to 3. This gives:
[1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
Similarily, after m = 6, we get
[1, 2, 2, 3, 2, 4, 2, 0, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 8 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 12 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 0, 2, 6, 2, 0], after m = 16 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 0], after m = 20 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 8]. Now, m > 20 so we stop. (End)
The above method is inefficient, because the step "set all elements a(n) up to n = Nmax with prime signature s(n) = S[c] to c" requires factoring all integers up to Nmax (or at least comparing their signature, once computed, with S[c]) again and again. It is much more efficient to run only once over each m = 1..Nmax, compute its prime signature s(m), add it to an ordered list in case it did not occur earlier, together with its "rank" (= new size of the list), and assign that rank to a(m). The list of prime signatures is much shorter than [1..Nmax]. One can also use m'(m) := the smallest n with the prime signature of m (which is faster to compute than to search for the signature) as representative for s(m), and set a(m) := a(m'(m)). Then it is sufficient to have just one counter (number of prime signatures seen so far) as auxiliary variable, in addition to the sequence to be computed. - _M. F. Hasler_, Jul 18 2019
		

Crossrefs

Cf. A025487, A046523, A064839 (ordinal transform of this sequence), A181819, and arrays A095904, A179216.
Sequences that are unions of finite number (>= 2) of equivalence classes determined by the values that this sequence obtains (i.e., sequences mentioned in David A. Corneth's May 12 2017 formula): A001358 (A001248 U A006881, values 3 & 4), A007422 (values 1, 4, 5), A007964 (2, 3, 4, 5), A014612 (5, 6, 9), A030513 (4, 5), A037143 (1, 2, 3, 4), A037144 (1, 2, 3, 4, 5, 6, 9), A080258 (6, 7), A084116 (2, 4, 5), A167171 (2, 4), A217856 (6, 9).
Cf. also A077462, A305897 (stricter variants, with finer partitioning) and A254524, A286603, A286605, A286610, A286619, A286621, A286622, A286626, A286378 for other similarly constructed sequences.

Programs

  • Maple
    A101296 := proc(n)
        local a046523, a;
        a046523 := A046523(n) ;
        for a from 1 do
            if A025487(a) = a046523 then
                return a;
            elif A025487(a) > a046523 then
                return -1 ;
            end if;
        end do:
    end proc: # R. J. Mathar, May 26 2017
  • Mathematica
    With[{nn = 120}, Function[s, Table[Position[Keys@s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}] ] (* Michael De Vlieger, May 12 2017, Version 10 *)
  • PARI
    find(ps, vps) = {for (k=1, #vps, if (vps[k] == ps, return(k)););}
    lisps(nn) = {vps = []; for (n=1, nn, ps = vecsort(factor(n)[,2]); ips = find(ps, vps); if (! ips, vps = concat(vps, ps); ips = #vps); print1(ips, ", "););} \\ Michel Marcus, Nov 15 2015; edited by M. F. Hasler, Jul 16 2019
    
  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,rgs_transform(vector(100000,n,A046523(n))),"b101296.txt");
    \\ Antti Karttunen, May 12 2017

Formula

A025487(a(n)) = A046523(n).
Indices of records give A025487. - Michel Marcus, Nov 16 2015
From David A. Corneth, May 12 2017: (Start) [Corresponding characteristic function in brackets]
a(A000012(n)) = 1 (sig.: ()). [A063524]
a(A000040(n)) = 2 (sig.: (1)). [A010051]
a(A001248(n)) = 3 (sig.: (2)). [A302048]
a(A006881(n)) = 4 (sig.: (1,1)). [A280710]
a(A030078(n)) = 5 (sig.: (3)).
a(A054753(n)) = 6 (sig.: (1,2)). [A353472]
a(A030514(n)) = 7 (sig.: (4)).
a(A065036(n)) = 8 (sig.: (1,3)).
a(A007304(n)) = 9 (sig.: (1,1,1)). [A354926]
a(A050997(n)) = 10 (sig.: (5)).
a(A085986(n)) = 11 (sig.: (2,2)).
a(A178739(n)) = 12 (sig.: (1,4)).
a(A085987(n)) = 13 (sig.: (1,1,2)).
a(A030516(n)) = 14 (sig.: (6)).
a(A143610(n)) = 15 (sig.: (2,3)).
a(A178740(n)) = 16 (sig.: (1,5)).
a(A189975(n)) = 17 (sig.: (1,1,3)).
a(A092759(n)) = 18 (sig.: (7)).
a(A189988(n)) = 19 (sig.: (2,4)).
a(A179643(n)) = 20 (sig.: (1,2,2)).
a(A189987(n)) = 21 (sig.: (1,6)).
a(A046386(n)) = 22 (sig.: (1,1,1,1)).
a(A162142(n)) = 23 (sig.: (2,2,2)).
a(A179644(n)) = 24 (sig.: (1,1,4)).
a(A179645(n)) = 25 (sig.: (8)).
a(A179646(n)) = 26 (sig.: (2,5)).
a(A163569(n)) = 27 (sig.: (1,2,3)).
a(A179664(n)) = 28 (sig.: (1,7)).
a(A189982(n)) = 29 (sig.: (1,1,1,2)).
a(A179666(n)) = 30 (sig.: (3,4)).
a(A179667(n)) = 31 (sig.: (1,1,5)).
a(A179665(n)) = 32 (sig.: (9)).
a(A189990(n)) = 33 (sig.: (2,6)).
a(A179669(n)) = 34 (sig.: (1,2,4)).
a(A179668(n)) = 35 (sig.: (1,8)).
a(A179670(n)) = 36 (sig.: (1,1,1,3)).
a(A179671(n)) = 37 (sig.: (3,5)).
a(A162143(n)) = 38 (sig.: (2,2,2)).
a(A179672(n)) = 39 (sig.: (1,1,6)).
a(A030629(n)) = 40 (sig.: (10)).
a(A179688(n)) = 41 (sig.: (1,3,3)).
a(A179689(n)) = 42 (sig.: (2,7)).
a(A179690(n)) = 43 (sig.: (1,1,2,2)).
a(A189991(n)) = 44 (sig.: (4,4)).
a(A179691(n)) = 45 (sig.: (1,2,5)).
a(A179692(n)) = 46 (sig.: (1,9)).
a(A179693(n)) = 47 (sig.: (1,1,1,4)).
a(A179694(n)) = 48 (sig.: (3,6)).
a(A179695(n)) = 49 (sig.: (2,2,3)).
a(A179696(n)) = 50 (sig.: (1,1,7)).
(End)

Extensions

Data section extended to 120 terms by Antti Karttunen, May 12 2017
Minor edits/corrections by M. F. Hasler, Jul 18 2019

A030638 Numbers with 20 divisors.

Original entry on oeis.org

240, 336, 432, 528, 560, 624, 648, 810, 816, 880, 912, 1040, 1104, 1134, 1232, 1360, 1392, 1456, 1488, 1520, 1536, 1776, 1782, 1840, 1904, 1968, 2000, 2064, 2106, 2128, 2256, 2288, 2320, 2480, 2544, 2560, 2576, 2754, 2832, 2835, 2928
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^19, p*q^9 (A179692), p*q*r^4 (A179644) or p^3*q^4 (A179666), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

A179668 Products of the 8th power of a prime and a distinct prime (p^8*q).

Original entry on oeis.org

768, 1280, 1792, 2816, 3328, 4352, 4864, 5888, 7424, 7936, 9472, 10496, 11008, 12032, 13122, 13568, 15104, 15616, 17152, 18176, 18688, 20224, 21248, 22784, 24832, 25856, 26368, 27392, 27904, 28928, 32512, 32805, 33536, 35072, 35584, 38144, 38656, 40192
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,8}; Select[Range[40000], f]
    With[{nn=40},Take[Union[#[[1]]^8 #[[2]]&/@Flatten[Permutations/@Subsets[ Prime[Range[nn]],{2}],1]],nn]] (* Harvey P. Dale, Jan 20 2016 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/8),t=p^8;forprime(q=2,lim\t,if(p==q,next);listput(v,t*q)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A179668(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

A179692 Numbers of the form p^9*q where p and q are distinct primes.

Original entry on oeis.org

1536, 2560, 3584, 5632, 6656, 8704, 9728, 11776, 14848, 15872, 18944, 20992, 22016, 24064, 27136, 30208, 31232, 34304, 36352, 37376, 39366, 40448, 42496, 45568, 49664, 51712, 52736, 54784, 55808, 57856, 65024, 67072, 70144, 71168, 76288, 77312, 80384, 83456
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,9}; Select[Range[90000], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\2)^(1/9), t=p^9;forprime(q=2, lim\t, if(p==q, next);listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179692(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**9) for p in primerange(integer_nthroot(x,9)[0]+1))+primepi(integer_nthroot(x,10)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

A179689 Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q distinct primes.

Original entry on oeis.org

1152, 3200, 6272, 8748, 15488, 21632, 36992, 46208, 54675, 67712, 107163, 107648, 123008, 175232, 215168, 236672, 264627, 282752, 312500, 359552, 369603, 445568, 476288, 574592, 632043, 645248, 682112, 703125, 789507, 798848, 881792, 1013888
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 1, a(n-1))
            while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2]
          do od; k
        end:
    seq (a(n), n=1..32);  # Alois P. Heinz, Jan 23 2011
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,7}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/7), t=p^7;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A179689(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(7) - P(9) = A085548 * A085967 - A085969 = 0.001741..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Title edited by Daniel Forgues, Jan 22 2011

A179696 Numbers with prime signature {7,1,1}, i.e., of form p^7*q*r with p, q and r distinct primes.

Original entry on oeis.org

1920, 2688, 4224, 4480, 4992, 6528, 7040, 7296, 8320, 8832, 9856, 10880, 11136, 11648, 11904, 12160, 14208, 14720, 15232, 15744, 16512, 17024, 18048, 18304, 18560, 19840, 20352, 20608, 21870, 22656, 23424, 23680, 23936, 25728, 25984, 26240, 26752, 27264
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ `if` (n=1, 1, a(n-1))
            while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 1, 1]
          do od; k
        end:
    seq (a(n), n=1..40); # Alois P. Heinz, Jan 23 2011
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,7}; Select[Range[30000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/7), t1=p^7;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A179696(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**7)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,7)[0]+1))+sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))-primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

Title edited by Daniel Forgues, Jan 22 2011

A337533 1 together with nonsquares whose square part's square root is in the sequence.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Munn, Aug 31 2020

Keywords

Comments

The appearance of a number is determined by its prime signature.
Every squarefree number is present, as the square root of the square part of a squarefree number is 1. Other 4th-power-free numbers are present if and only if they are nonsquare.
If the square part of nonsquarefree k is a 4th power, k does not appear.
Every positive integer k is the product of a unique subset S_k of the terms of A050376, which are arranged in array form in A329050 (primes in column 0, squares of primes in column 1, 4th powers of primes in column 2 and so on). k > 1 is in this sequence if and only if the members of S_k occur in consecutive columns of A329050, starting with column 0.
If the qualifying condition in the previous paragraph was based on the rows instead of the columns of A329050, we would get A055932. The self-inverse function defined by A225546 transposes A329050. A225546 also has multiplicative properties such that if we consider A055932 and this sequence as sets, A225546(.) maps the members of either set 1:1 onto the other set.

Examples

			4 is square and not 1, so 4 is not in the sequence.
12 = 3 * 2^2 is nonsquare, and has square part 4, whose square root (2) is in the sequence. So 12 is in the sequence.
32 = 2 * 4^2 is nonsquare, but has square part 16, whose square root (4) is not in the sequence. So 32 is not in the sequence.
		

Crossrefs

Complement of A337534.
Closed under A000188(.).
A209229, A267116 are used in a formula defining this sequence.
Subsequence of A164514.
A007913, A008833, A008835, A335324 give the squarefree, square and comparably related parts of a number.
Related to A055932 via A225546.

Programs

  • Maple
    S:= {1}:
    for n from 2 to 100 do
      if not issqr(n) then
        F:= ifactors(n)[2];
        s:= mul(t[1]^floor(t[2]/2),t=F);
        if member(s,S) then S:= S union {n} fi
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Jan 07 2025
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[100], # == 1 || pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)

Formula

Numbers m such that A209229(A267116(m) + 1) = 1.
If A008835(a(n)) > 1 then A335324(a(n)) > 1.
If A008833(a(n)) > 1 then A007913(a(n)) > 1.

A179694 Numbers of the form p^6*q^3 where p and q are distinct primes.

Original entry on oeis.org

1728, 5832, 8000, 21952, 85184, 91125, 125000, 140608, 250047, 314432, 421875, 438976, 778688, 941192, 970299, 1560896, 1601613, 1906624, 3176523, 3241792, 3581577, 4410944, 5000211, 5088448, 5359375, 6644672
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,6}; Select[Range[10^6], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\8)^(1/6), t=p^6;forprime(q=2, (lim\t)^(1/3), if(p==q, next);listput(v,t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179694(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**6,3)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(6) - P(9) = A085541 * A085966 - A085969 = 0.000978..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n) = A054753(n)^3. - R. J. Mathar, May 05 2023

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A275387 Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2016

Keywords

Comments

Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...

Examples

			a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
    x:=divisors(n):n0:=nops(x):it:=0:
    for i from 1 to n0 do:
      for j from i+1 to n0 do:
       if gcd(x[i],x[j])>1
        then
        it:=it+1:
        else
       fi:
      od:
    od:
      printf(`%d, `,it):
    od:
  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
  • PARI
    a(n)=my(d=divisors(n)); sum(i=2,#d, sum(j=1,i-1, gcd(d[i],d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    a(n)=my(f=factor(n)[,2],t=prod(i=1,#f,f[i]+1)); t*(t-1)/2 - (prod(i=1,#f,2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016

Formula

a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1Wesley Ivan Hurt, Jan 01 2021
Showing 1-10 of 14 results. Next