A260484 Complement of the Beatty sequence for e^(1/Pi) = A179706.
3, 7, 11, 14, 18, 22, 25, 29, 33, 36, 40, 44, 47, 51, 55, 58, 62, 66, 69, 73, 77, 80, 84, 88, 91, 95, 99, 102, 106, 110, 113, 117, 121, 124, 128, 132, 135, 139, 143, 146, 150, 154, 157, 161, 165, 168, 172, 176, 179, 183, 187, 190, 194, 198
Offset: 1
Keywords
Examples
For n = 5, floor(5*e^(1/Pi)/(e^(1/Pi)-1)) = 18.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Eric Weisstein's World of Mathematics, e.
- Eric Weisstein's World of Mathematics, Pi.
- Index entries for sequences related to Beatty sequences.
Programs
-
Mathematica
Floor[Range[100]/(1 - Exp[-1/Pi])] (* Paolo Xausa, Jul 17 2024 *)
-
PARI
vector(80, n, floor(n*exp(1/Pi)/(exp(1/Pi)-1))) \\ Michel Marcus, Aug 05 2015
-
Python
from sympy import E, pi, floor for n in range(1,101): print(floor(n*E**(1/pi)/(E**(1/pi)-1)), end=', ')
Formula
a(n) = floor(n*e^(1/Pi)/(e^(1/Pi)-1)).
Comments