cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260484 Complement of the Beatty sequence for e^(1/Pi) = A179706.

Original entry on oeis.org

3, 7, 11, 14, 18, 22, 25, 29, 33, 36, 40, 44, 47, 51, 55, 58, 62, 66, 69, 73, 77, 80, 84, 88, 91, 95, 99, 102, 106, 110, 113, 117, 121, 124, 128, 132, 135, 139, 143, 146, 150, 154, 157, 161, 165, 168, 172, 176, 179, 183, 187, 190, 194, 198
Offset: 1

Views

Author

Karl V. Keller, Jr., Jul 26 2015

Keywords

Examples

			For n = 5, floor(5*e^(1/Pi)/(e^(1/Pi)-1)) = 18.
		

Crossrefs

Cf. A179706 (e^(1/Pi)), A260483 (complement).

Programs

  • Mathematica
    Floor[Range[100]/(1 - Exp[-1/Pi])] (* Paolo Xausa, Jul 17 2024 *)
  • PARI
    vector(80, n, floor(n*exp(1/Pi)/(exp(1/Pi)-1))) \\ Michel Marcus, Aug 05 2015
  • Python
    from sympy import E, pi, floor
    for n in range(1,101): print(floor(n*E**(1/pi)/(E**(1/pi)-1)), end=', ')
    

Formula

a(n) = floor(n*e^(1/Pi)/(e^(1/Pi)-1)).

A260483 Beatty sequence for e^(1/Pi) = A179706.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 81, 82, 83, 85
Offset: 1

Views

Author

Karl V. Keller, Jr., Jul 26 2015

Keywords

Comments

The initial 634 terms are the same as the formula: a(n) = floor((11*n - 1) / 8). - Simon Strandgaard, Sep 24 2021

Examples

			For n = 5, floor(5*e^(1/Pi)) = 6.
		

Crossrefs

Cf. A179706 (e^(1/Pi)), A260484 (complement).

Programs

  • Mathematica
    Array[Floor[#*E^(1/Pi)] &, 62] (* Michael De Vlieger, Sep 28 2021 *)
  • PARI
    vector(80, n, floor(n*exp(1/Pi))) \\ Michel Marcus, Aug 05 2015
  • Python
    from sympy import  E, pi, floor
    for n in range(1,101): print(floor(n*E**(1/pi)), end=', ')
    

Formula

a(n) = floor(n*e^(1/Pi)).
Showing 1-2 of 2 results.