A179781 a(n) = AP(n) is the total number of aperiodic k-palindromes of n, 1 <= k <= n.
1, 1, 1, 2, 3, 5, 7, 12, 14, 27, 31, 54, 63, 119, 123, 240, 255, 490, 511, 990, 1015, 2015, 2047, 4020, 4092, 8127, 8176, 16254, 16383, 32607, 32767, 65280, 65503, 130815, 131061, 261576, 262143, 523775, 524223, 1047540, 1048575, 2096003, 2097151, 4192254
Offset: 1
Keywords
Examples
For a(7)=7, the achiral set partitions are 0000001, 0000011, 0000101, 0000111, 0001001, 0010011, and 0010101. - _Robert A. Russell_, Jun 19 2019
References
- John P. McSorley, Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Hunki Baek, Sejeong Bang, Dongseok Kim, Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[n/#] * 2^Floor[#/2]&]; Array[a, 44] (* Jean-François Alcover, Nov 04 2017 *)
-
PARI
a(n) = sumdiv(n, d, moebius(n/d) * 2^(d\2)); \\ Michel Marcus, Dec 09 2014
Formula
a(n) = Sum_{d | n} moebius(n/d)*2^(floor(d/2)) (see Baek et al. page 9). - Michel Marcus, Dec 09 2014
a(n) = 2*A000046(n) - A000048(n) = A000048(n) - 2*A308706(n) = A000046(n) - A308706(n). - Robert A. Russell, Jun 19 2019
A016116(n) = Sum_{d|n} a(d). - Robert A. Russell, Jun 19 2019
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + 2*x^k)/(1 - x^(2*k)). - Andrew Howroyd, Sep 27 2019
Extensions
More terms from Michel Marcus, Dec 09 2014
Comments