cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179781 a(n) = AP(n) is the total number of aperiodic k-palindromes of n, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 12, 14, 27, 31, 54, 63, 119, 123, 240, 255, 490, 511, 990, 1015, 2015, 2047, 4020, 4092, 8127, 8176, 16254, 16383, 32607, 32767, 65280, 65503, 130815, 131061, 261576, 262143, 523775, 524223, 1047540, 1048575, 2096003, 2097151, 4192254
Offset: 1

Views

Author

John P. McSorley, Jul 26 2010

Keywords

Comments

A k-composition of n is an ordered collection of k positive integers (parts) which sum to n.
A k-composition is aperiodic (primitive) if its period is k, or if it is not the concatenation of a smaller composition.
A k-palindrome of n is a k-composition of n which is a palindrome.
This sequence is AP(n), the total number of aperiodic k-palindromes of n, 1 <= k <= n.
For example AP(6)=5 because the number n=6
has 1 aperiodic 1-palindrome, namely 6 itself;
has 1 aperiodic 3-palindrome, namely 141;
has 2 aperiodic 4-palindromes, namely 2112 and 1221;
has 1 aperiodic 5-palindrome, namely 11211.
This gives a total of 1+1+2+1=5 aperiodic palindromes of 6.
Number of achiral set partitions of a primitive cycle of n elements having up to two different elements. - Robert A. Russell, Jun 19 2019

Examples

			For a(7)=7, the achiral set partitions are 0000001, 0000011, 0000101, 0000111, 0001001, 0010011, and 0010101. - _Robert A. Russell_, Jun 19 2019
		

References

  • John P. McSorley, Counting k-compositions of n with palindromic and related structures. Preprint, 2010.

Crossrefs

Row sums of A179519.
A000048 (oriented), A000046 (unoriented), A308706 (chiral), A016116 (not primitive). - Robert A. Russell, Jun 19 2019

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * 2^Floor[#/2]&];
    Array[a, 44] (* Jean-François Alcover, Nov 04 2017 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * 2^(d\2)); \\ Michel Marcus, Dec 09 2014

Formula

a(n) = Sum_{d | n} moebius(n/d)*2^(floor(d/2)) (see Baek et al. page 9). - Michel Marcus, Dec 09 2014
a(n) = 2*A000046(n) - A000048(n) = A000048(n) - 2*A308706(n) = A000046(n) - A308706(n). - Robert A. Russell, Jun 19 2019
A016116(n) = Sum_{d|n} a(d). - Robert A. Russell, Jun 19 2019
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + 2*x^k)/(1 - x^(2*k)). - Andrew Howroyd, Sep 27 2019

Extensions

More terms from Michel Marcus, Dec 09 2014