A179824 Chromatic polynomial of the star graph on 4 vertices (claw graph) and the path graph on 4 vertices.
2, 24, 108, 320, 750, 1512, 2744, 4608, 7290, 11000, 15972, 22464, 30758, 41160, 54000, 69632, 88434, 110808, 137180, 168000, 203742, 244904, 292008, 345600, 406250, 474552, 551124, 636608, 731670, 837000, 953312, 1081344, 1221858
Offset: 2
Examples
From _Jack W Grahl_, Jul 16 2018: (Start) Consider the claw graph, which has vertices A, B, C, D, and edges AB, AC, AD. To color this graph with 3 colors, we can choose any of the 3 colors for A. Then each of the other vertices can be colored with any of the remaining two colors, giving 3 * 2 * 2 * 2 = 24 choices in all. Similarly, consider the path graph with the same vertices and edges AB, BC, CD. We have 3 choices for the color of A, then 2 choices for the color of B (any color except that chosen for A), 2 choices for the color of C (any color except B's) etc. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Andrew Weimholt, Re: Intersecting circles, SeqFan post Mar 09 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([2..40], n-> n*(n-1)^3 ); # G. C. Greubel, Aug 10 2019
-
Haskell
let f n = [ (x,a,b,c) | let t = [1..n], x <- t, a <- t, x /= a, b <- t, x /= b, c <- t, x /= c ] in map (length.f) [2..]
-
Haskell
let f n = n*(n-1)^3 in map f [2..]
-
Magma
I:=[2,24,108,320,750]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Mar 12 2014
-
Mathematica
CoefficientList[Series[2 (1 + 7 x + 4 x^2)/(1 - x)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 12 2014 *) Table[n^3+n^4,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{2,24, 108,320,750},40] (* Harvey P. Dale, Sep 05 2015 *)
-
PARI
a(n) = n*(n-1)^3 \\ Charles R Greathouse IV, Mar 11 2014
-
Sage
[n*(n-1)^3 for n in (2..40)] # G. C. Greubel, Aug 10 2019
Formula
a(n) = n*(n-1)^3. - Jaime Soffer (jaime.soffer(AT)gmail.com), Jul 30 2010
G.f.: 2*x^2*(1 + 7*x + 4*x^2)/(1-x)^5. - Colin Barker, Jan 30 2012
a(n) = 2*A019582(n). - R. J. Mathar, Jun 09 2013
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Mar 12 2014
Sum_{n>=2} 1/a(n) = A249649. - R. J. Mathar, Oct 18 2019
Sum_{n>=2} (-1)^n/a(n) = 3*zeta(3)/4 + 2*log(2) - Pi^2/12 - 1. - Amiram Eldar, Nov 05 2020
Extensions
Name edited by Jack W Grahl, Jul 16 2018
Comments