cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A211795 Number of (w,x,y,z) with all terms in {1,...,n} and w*x < 2*y*z.

Original entry on oeis.org

0, 1, 11, 58, 177, 437, 894, 1659, 2813, 4502, 6836, 10008, 14121, 19449, 26117, 34372, 44422, 56597, 71044, 88160, 108115, 131328, 158074, 188773, 223604, 263172, 307719, 357715, 413493, 475690, 544480, 620632, 704381, 796413
Offset: 0

Views

Author

Clark Kimberling, Apr 27 2012

Keywords

Comments

Each sequence in the following guide counts 4-tuples
(w,x,y,z) such that the indicated relation holds and the four numbers w,x,y,z are in {1,...,n}. The notation "m div" means that m divides every term of the sequence.
A211058 ... wx <= yz
A211787 ... wx <= 2yz
A211795 ... wx < 2yz
A211797 ... wx > 2yz
A211809 ... wx >= 2yz
A211812 ... wx <= 3yz
A211917 ... wx < 3yz
A211918 ... wx > 3yz
A211919 ... wx >= 3yz
A211920 ... 2wx < 3yz
A211921 ... 2wx <= 3yz
A211922 ... 2wx > 3yz
A211923 ... 2wx >= 3yz
A212019 ... wx = 2yz ..... 2 div
A212020 ... wx = 3yz ..... 2 div
A212021 ... 2wx = 3yz .... 2 div
A212047 ... wx = 4yz
A212048 ... 3wx = 4yz .... 2 div
A212049 ... wx = 5yz ..... 2 div
A212050 ... 2wx = 5yz .... 2 div
A212051 ... 3wx = 5yz .... 2 div
A212052 ... 4wx = 5yz .... 2 div
A209978 ... wx = yz + 1 .. 2 div
A212053 ... wx <= yz + 1
A212054 ... wx > yz + 1
A212055 ... wx <= yz + 2
A212056 ... wx > yz + 2
A197168 ... wx = yz + 2 .. 2 div
A061201 ... w = xyz
A212057 ... w < xyz
A212058 ... w >= xyz
A212059 ... w = xyz - 1
A212060 ... w = xyz - 2
A212061 ... wx = (yz)^2
A212062 ... w^2 = xyz
A212063 ... w^2 < xyz
A212064 ... w^2 >= xyz
A212065 ... w^2 <= xyz
A212066 ... w^2 > xyz
A212067 ... w^3 = xyz
A002623 ... w = 2x + y + z
A006918 ... w = 2x + 2y + z
A000601 ... w = x + 2y + 3z (except for initial 0's)
A212068 ... 2w = x + y + z
A212069 ... 3w = x + y + z (w = average{x,y,z})
A212088 ... 3w < x + y + z
A212089 ... 3w >= x + y + z
A212090 ... w < x + y + z
A000332 ... w >= x + y + z
A212145 ... w < 2x + y + z
A001752 ... w >= 2x + y + z
A001400 ... w = 2x +3y + 4z
A005900 ... w = -x + y + z
A192023 ... w = -x + y + z + 2
A212091 ... w^2 = x^2 + y^2 + z^2 ... 3 div
A212087 ... w^2 + x^2 = y^2 + z^2
A212092 ... w^2 < x^2 + y^2 + z^2
A212093 ... w^2 <= x^2 + y^2 + z^2
A212094 ... w^2 > x^2 + y^2 + z^2
A212095 ... w^2 >= x^2 + y^2 + z^2
A212096 ... w^3 = x^3 + y^3 + z^3 ... 6 div
A212097 ... w^3 < x^3 + y^3 + z^3
A212098 ... w^3 <= x^3 + y^3 + z^3
A212099 ... w^3 > x^3 + y^3 + z^3
A212100 ... w^3 >= x^3 + y^3 + z^3
A212101 ... wx^2 = yz^2
A212102 ... 1/w = 1/x + 1/y + 1/z
A212103 ... 3/w = 1/x + 1/y + 1/z; w = h.m. of {x,y,z}
A212104 ... 3/w >= 1/x + 1/y + 1/z; w >= h.m.
A212105 ... 3/w < 1/x + 1/y + 1/z; w < h.m.
A212106 ... 3/w > 1/x + 1/y + 1/z; w > h.m.
A212107 ... 3/w <= 1/x + 1/y + 1/z; w <= h.m.
A212133 ... median(w,x,y,z) = mean(w,x,y,z)
A212134 ... median(w,x,y,z) <= mean(w,x,y,z)
A212135 ... median(w,x,y,z) > mean(w,x,y,z)
A212241 ... wx + yz > n
A212243 ... 2wx + yz = n
A212244 ... w = xyz - n
A212245 ... w = xyz - 2n
A212246 ... 2w = x + y + z - n
A212247 ... 3w = x + y + z + n
A212249 ... 3w < x + y + z + n
A212250 ... 3w >= x + y + z + n
A212251 ... 3w = x + y + z + n + 1
A212252 ... 3w = x + y + z + n + 2
A212254 ... w = x + 2y + 3z - n
A212255 ... w^2 = mean(x^2, y^2, z^2)
A212256 ... 4/w = 1/x + 1/y +1/z + 1/n
In the list above, if the relation in the second column is of the form "w rel ax + by + cz" then the sequence is linearly recurrent. In the list below, the same is true for expressions involving more than one relation.
A000332 ... w < x <= y < z .... C(n,4)
A000914 ... w < x <= y < z .... Stirling 1st kind
A000914 ... w < x <= y >= z ... Stirling 1st kind
A050534 ... w < x < y >= z .... tritriangular
A001296 ... w <= x <= y >= z .. 4-dim pyramidal
A006322 ... x < x > y >= z
A002418 ... w < x >= y < z
A050534 ... w < x >=y >= z
A212415 ... w < x >= y <= z
A001296 ... w < x >= y <= z
A212246 ... w <= x > y <= z
A006322 ... w <= x >= y <= z
A212501 ... w > x < y >= z
A212503 ... w < 2x and y < 2z ..... A (note below)
A212504 ... w < 2x and y > 2z ..... A
A212505 ... w < 2x and y >= 2z .... A
A212506 ... w <= 2x and y <= 2z ... A
A212507 ... w < 2x and y <= 2z .... B
A212508 ... w < 2x and y < 3z ..... C
A212509 ... w < 2x and y <= 3z .... C
A212510 ... w < 2x and y > 3z ..... C
A212511 ... w < 2x and y >= 3z .... C
A212512 ... w <= 2x and y < 3z .... C
A212513 ... w <= 2x and y <= 3z ... C
A212514 ... w <= 2x and y > 3z .... C
A212515 ... w <= 2x and y >= 3z ... C
A212516 ... w > 2x and y < 3z ..... C
A212517 ... w > 2x and y <= 3z .... C
A212518 ... w > 2x and y > 3z ..... C
A212519 ... w > 2x and y >= 3z .... C
A212520 ... w >= 2x and y < 3z .... C
A212521 ... w >= 2x and y <= 3z ... C
A212522 ... w >= 2x and y > 3z .... C
A212523 ... w + x < y + z
A212560 ... w + x <= y + z
A212561 ... w + x = 2y + 2z
A212562 ... w + x < 2y + 2z ....... B
A212563 ... w + x <= 2y + 2z ...... B
A212564 ... w + x > 2y + 2z ....... B
A212565 ... w + x >= 2y + 2z ...... B
A212566 ... w + x = 3y + 3z
A212567 ... 2w + 2x = 3y + 3z
A212570 ... |w - x| = |x - y| + |y - z|
A212571 ... |w - x| < |x - y| + |y - z| ... B ... 4 div
A212572 ... |w - x| <= |x - y| + |y - z| .. B
A212573 ... |w - x| > |x - y| + |y - z| ... B ... 2 div
A212574 ... |w - x| >= |x - y| + |y - z| .. B
A212575 ... 2|w - x| = |x - y| + |y - z|
A212576 ... |w - x| = 2|x - y| + 2|y - z|
A212577 ... |w - x| = 2|x - y| - |y - z|
A212578 ... 2|w - x| = |x - y| - |y - z|
A212579 ... min{|w-x|,|w-y|} = min{|x-y|,|x-z|}
A212692 ... w = |x - y| + |y - z| ............... 2 div
A212568 ... w < |x - y| + |y - z| ............... 2 div
A212573 ... w <= |x - y| + |y - z| .............. 2 div
A212574 ... w > |x - y| + |y - z|
A212575 ... w >= |x - y| + |y - z|
A212676 ... w + x = |x - y| + |y - z| ......... H
A212677 ... w + y = |x - y| + |y - z|
A212678 ... w + x + y = |x - y| + |y - z|
A006918 ... w + x + y + z = |x - y| + |y - z| . H
A212679 ... |x - y| = |y - z| ................. H
A212680 ... |x - y| = |y - z| + 1 ..............H 2 div
A212681 ... |x - y| < |y - z| ................... 2 div
A212682 ... |x - y| >= |y - z|
A212683 ... |x - y| = w + |y - z| ............... 2 div
A212684 ... |x - y| = n - w + |y - z|
A212685 ... |w - x| = w + |y - z|
A186707 ... |w - x| < w + |y - z| ... (Note D)
A212714 ... |w - x| >= w + |y - z| .......... H . 2 div
A212686 ... 2*|w - x| = n + |y - z| ............. 4 div
A212687 ... 2*|w - x| < n + |y - z| ......... B
A212688 ... 2*|w - x| < n + |y - z| ......... B . 2 div
A212689 ... 2*|w - x| > n + |y - z| ......... B . 2 div
A212690 ... 2*|w - x| <= n + |y - z| ........ B
A212691 ... w + |x - y| = |x - z| + |y - z| . E . 2 div
...
In the above lists, all the terms of (w,x,y,z) are in {1,...,n}, but in the next lists they are all in {0,...,n}, and sequences are all linearly recurrent.
R=range{w,x,y,z}=max{w,x,y,z}-min{w,x,y,z}.
A212740 ... max{w,x,y,z} < 2*min{w,x,y,z} .... A
A212741 ... max{w,x,y,z} >= 2*min{w,x,y,z} ... A
A212742 ... max{w,x,y,z} <= 2*min{w,x,y,z} ... A
A212743 ... max{w,x,y,z} > 2*min{w,x,y,z} .... A . 2 div
A212744 ... w=range (=max-min) ............... E
A212745 ... w=max{w,x,y,z} - 2*min{w,x,y,z}
A212746 ... R is in {w,x,y,z} ................ E
A212569 ... R is not in {w,x,y,z} ............ E
A212749 ... w=R or x
A212750 ... w=R or x=R or y
A212751 ... w=R or x=R or y
A212752 ... wR ......... A
A212753 ... wR or z>R ......... D
A212754 ... wR or y>R or z>R ......... D
A002415 ... w = x + R ........................ D
A212755 ... |w - x| = R ...................... D
A212756 ... 2w = x + R
A212757 ... 2w = R
A212758 ... w = floor(R/2)
A002413 ... w = floor((x+y+z/2))
A212759 ... w, x, y are even
A212760 ... w is even and x = y + z .......... E
A212761 ... w is odd and x and y are even .... F . 2 div
A212762 ... w and x are odd y is even ........ F . 2 div
A212763 ... w, x, y are odd .................. F
A212764 ... w, x, y are even and z is odd .... F
A030179 ... w and x are even and y and z odd
A212765 ... w is even and x,y,z are odd ...... F
A212766 ... w is even and x is odd ........... A . 2 div
A212767 ... w and x are even and w+x=y+z ..... E
A212889 ... R is even ........................ A
A212890 ... R is odd ......................... A . 2 div
A212742 ... w-x, x-y, y-z are all even ....... A
A212892 ... w-x, x-y, y-z are all odd ........ A
A212893 ... w-x, x-y, y-z have same parity ... A
A005915 ... min{|w-x|, |x-y|, |y-z|} = 0
A212894 ... min{|w-x|, |x-y|, |y-z|} = 1
A212895 ... min{|w-x|, |x-y|, |y-z|} = 2
A179824 ... min{|w-x|, |x-y|, |y-z|} > 0
A212896 ... min{|w-x|, |x-y|, |y-z|} <= 1
A212897 ... min{|w-x|, |x-y|, |y-z|} > 1
A212898 ... min{|w-x|, |x-y|, |y-z|} <= 2
A212899 ... min{|w-x|, |x-y|, |y-z|} > 2
A212901 ... |w-x| = |x-y| = |y-z|
A212900 ... |w-x|, |x-y|, |y-z| are distinct . G
A212902 ... |w-x| < |x-y| < |y-z| ............ G
A212903 ... |w-x| <= |x-y| <= |y-z| .......... G
A212904 ... |w-x| + |x-y| + |y-z| = n ........ H
A212905 ... |w-x| + |x-y| + |y-z| = 2n ....... H
...
Note A: A212503-A212506 (and others) have these recurrence coefficients: 2,2,-6,0,6,-2,-2,1.
B: 3,-1,-5,5,1,-3,1
C: 0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1
D: 4,-5,0,5,-4,1
E: 1,3,-3,-3,3,1,-1
F: 1,4,-4,-6,6,4,-4,-1,1
G: 2,1,-3,-1,1,3,-1,-2,1
H: 2,1,-4,1,2,-1

Examples

			a(2)=11 counts these (w,x,y,z): (1,1,1,1), (1,1,1,2), (1,1,2,1), (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2), (1,1,2,2), (1,2,2,2), (2,1,2,2), (2,2,2,2).
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w*x < 2 y*z, s = s + 1], {w, 1, #},
          {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A211795 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

a(n) = n^4 - A211809(n).

A265583 Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
Offset: 1

Author

R. J. Mathar, Dec 10 2015

Keywords

Comments

T(n,k) is the number of n-letter words in a k-letter alphabet with no adjacent letters the same. The factor k represents the number of choices of the first letter, and the n-1 times repeated factor k-1 represents the choices of the next n-1 letters avoiding their predecessor.
The antidiagonal sums are s(d) = 1, 2, 5, 12, 31, 88, 275, 942, 3513, 14158, 61241, 282632, .. for d = n+k >= 2.

Examples

			      1       2       3       4       5       6       7
      0       2       6      12      20      30      42
      0       2      12      36      80     150     252
      0       2      24     108     320     750    1512
      0       2      48     324    1280    3750    9072
      0       2      96     972    5120   18750   54432
      0       2     192    2916   20480   93750  326592
T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
		

Crossrefs

Cf. A007283 (column 3), A003946 (column 4), A003947 (column 5), A002378 (row 2), A011379 (row 3), A179824 (row 4), A055897 (diagonal), A265584.

Programs

  • GAP
    T:= function(n,k)
        if (n=1 and k=1) then return 1;
        else return k*(k-1)^(n-k-1);
        fi;
      end;
    Flat(List([2..15], n-> List([1..n-1], k-> T(n,k) ))); # G. C. Greubel, Aug 10 2019
  • Magma
    T:= func< n,k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >;
    [T(n,k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
    
  • Maple
    A265583 := proc(n,k)
        k*(k-1)^(n-1) ;
    end proc:
    seq(seq( A265583(d-k,k),k=1..d-1),d=2..13) ;
  • Mathematica
    T[1,1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k,k], {n,2,12}, {k,1,n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
  • PARI
    T(n,k) = if(n==k==1, 1, k*(k-1)^(n-k-1) );
    for(n=2,15, for(k=1,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 10 2019
    
  • Sage
    def T(n, k):
        if (n==k==1): return 1
        else: return k*(k-1)^(n-k-1)
    [[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
    

Formula

T(n,k) = k*A051129(n-1,k-1) = k*A003992(k-1,n-1).
G.f. for column k: k*x/(1-(k-1)*x). - R. J. Mathar, Dec 12 2015
G.f. for array: y/(y-1) - (1+1/x)*y*LerchPhi(y,1,-1/x). - Robert Israel, Dec 13 2018

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A330520 Sum of even integers <= n times the sum of odd integers <= n.

Original entry on oeis.org

0, 0, 2, 8, 24, 54, 108, 192, 320, 500, 750, 1080, 1512, 2058, 2744, 3584, 4608, 5832, 7290, 9000, 11000, 13310, 15972, 19008, 22464, 26364, 30758, 35672, 41160, 47250, 54000, 61440, 69632, 78608, 88434, 99144, 110808, 123462, 137180, 152000, 168000, 185220, 203742, 223608, 244904, 267674
Offset: 0

Author

J. Stauduhar, Dec 17 2019

Keywords

Comments

Number of crossings in a grid formed by drawing n parallel infinite-length lines perpendicular to the previous number of lines.
The sum of odd integers <= n is m^2 where m = round(n/2) is their number. The sum of even integers <= n is k(k+1) where k = floor(n/2) is their number. So a(n) = m^2*k(k+1), where the factor m appears three times. - M. F. Hasler, Dec 19 2019

Crossrefs

Cf. A000290 (sum of odd integers), A002378 (sum of even integers).

Programs

  • Mathematica
    CoefficientList[Series[2 (x^2 + x + 1) x^2/((x + 1)^2*(1 - x)^5), {x, 0, 45}], x] (* Michael De Vlieger, Dec 22 2019 *)
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,0,2,8,24,54,108},50] (* Harvey P. Dale, Dec 29 2021 *)
  • PARI
    apply( A330520(n)=n\2*(n\2+1)*(n\/2)^2, [0..99]) \\ M. F. Hasler, Dec 19 2019

Formula

G.f.: 2*(x^2+x+1)*x^2/((x+1)^2*(1-x)^5).
a(n) = 2 * A007009(n-1) for n>1.
a(2k+i) = (k+i)^3 (k+1-i), with i = 0 or 1. - M. F. Hasler, Dec 19 2019
a(n) = A002378(floor(n/2)) * A000290(ceiling(n/2)). - Bernard Schott, Dec 22 2019

A364922 a(n) is the square of the side length of a simplex whose n-dimensional inner hypervolume is equal to its (n-1)-dimensional surface hypervolume. As a result, the sequence starts at n=2.

Original entry on oeis.org

48, 216, 640, 1500, 3024, 5488, 9216, 14580, 22000, 31944, 44928, 61516, 82320, 108000, 139264, 176868, 221616, 274360, 336000, 407484, 489808, 584016, 691200, 812500, 949104, 1102248, 1273216, 1463340, 1674000, 1906624, 2162688, 2443716, 2751280, 3087000
Offset: 2

Author

Matt Moir, Apr 13 2024

Keywords

Comments

Setting the generalized hypervolume formula equal to the surface hypervolume formula and solving for the side length x (and ignoring the x = 0 solution, as it would correspond to a simplex consisting of only a single point) gives x = sqrt(2*(n^3)*(n+1)).

Crossrefs

Programs

  • Mathematica
    Table[2*n^3*(n + 1), {n, 2, 50}] (* Paolo Xausa, Apr 18 2024 *)
    LinearRecurrence[{5,-10,10,-5,1},{48,216,640,1500,3024},40] (* Harvey P. Dale, Aug 27 2024 *)
  • Python
    def a(n): return 2 * n**3 * (n + 1)
    print([a(n) for n in range(2, 50)])

Formula

a(n) = 2*n^3*(n+1) = 2*A179824(n+1).
From Stefano Spezia, Apr 13 2024: (Start)
G.f.: 4*x^2*(12 - 6*x + 10*x^2 - 5*x^3 + x^4)/(1 - x)^5.
a(n) = 4*A019582(n+1). (End)
Showing 1-5 of 5 results.