cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180001 Eventual period of a single cell in rule 110 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 9, 351, 91, 295, 32, 7, 27, 285, 30, 630, 44, 1058, 36, 250, 7, 405, 1652, 1044, 60, 7, 64, 495, 51, 1050, 72, 4403, 76, 390, 60, 7, 630, 1548, 88, 7, 7, 705, 96, 1470, 100, 765, 195, 8109, 7, 825, 7, 2052, 116, 7, 19560, 915
Offset: 1

Views

Author

Ben Branman, Jan 13 2011

Keywords

Comments

The first 21 terms match the most frequent possible outcome (see comment in A332717) with the exception of a(14) which is the second-most frequent. - Hans Havermann, Jun 11 2020

Examples

			For n=4, the evolution of a single cell is:
0001
0011
0111 <--= period starts
1101
0111 <--= again start of period
etc, so a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := -Subtract @@
       Flatten[Map[Position[#, #[[-1]]] &,
         NestWhileList[CellularAutomaton[110],
          Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]]
  • Sage
    def A180001(n):
        def bit(x,i): return (x >> i) & 1
        rulemap = dict((tuple(bit(i,k) for k in reversed(range(3))), bit(110,i)) for i in range(8))
        def neighbours(d, i): return tuple(d[k % n] for k in [i-1..i+1])
        v = [0]*n; v[-1] = 1;
        history = [v]
        while True:
            v2 = [rulemap[neighbours(history[-1], i)] for i in range(n)]
            if v2 in history: return len(history)-history.index(v2)
            history.append(v2) # D. S. McNeil, Jan 15 2011

Extensions

More terms from Alois P. Heinz, Jan 14 2011