cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A175723 a(1)=a(2)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)), where gpf = "greatest prime factor".

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2010

Keywords

Comments

Rapidly enters a loop with period 3,5,2,7.
More generally, if a(1) and a(2) are distinct positive numbers with a(1)+a(2) >= 2, the sequence eventually enters the cycle {7,3,5,2} [Back and Caragiu].

Crossrefs

Similar or related sequences: A177904, A177923, A178094, A178095, A178174, A178179, A180101, A180107, A221183.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,FactorInteger[a+b][[-1,1]]}; Transpose[NestList[nxt,{1,1},120]][[1]] (* or *) PadRight[{1,1,2},130,{5,2,7,3}] (* Harvey P. Dale, Feb 24 2015 *)

A076271 a(1) = 1, a(2) = 2, and for n > 2, a(n) = a(n-1) + gpf(a(n-1)), where gpf = greatest prime factor = A006530.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 04 2002

Keywords

Comments

a(n+1) is the smallest number such that the largest prime divisor of a(n) is the highest common factor of a(n) and a(n+1). - Amarnath Murthy, Oct 17 2002
Essentially the same as A036441(n) = a(n+1) and A180107(n) = a(n-1) (n > 1).
The equivalent sequence with A020639 = spf instead of A006530 = gpf begins a(1) = 1, a(2) = 2, and from then on we get all even numbers: a(n) = a(2) + 2*(n-2), n > 1. - M. F. Hasler, Apr 08 2015
From David James Sycamore, Apr 27 2017: (Start)
The sequence contains only one prime; a(2)=2, all other terms (excluding a(1)=1) being composite, since if a(n) for some n > 2 is assumed to be the first prime after 2, then a(n) = a(n-1) + gpf(a(n-1))= m*q+q = q*(m+1) for some integer m > 1 and some prime q. This number is composite; contradiction. Terms after a(3)=4 alternate between even and odd values since each is created by addition of a prime (odd term).
All terms a(n) arise as consecutive multiples of consecutive primes occurring in their natural ascending order, 2,3,5,7.... (A000040). The number of (consecutive) terms which arise as multiples of p(n)= A000040(n) is 1 + p(n+1)- p(n-1), namely n-th term of the sequence: 2,4,5,7,7,7,7,7,11, etc. Example: Number of multiples of 17, the 7th prime, is 1+p(8)-p(6) = 1+19-13 = 7.
For any pair of consecutive primes, p,q (p < q) a(p+q-1) = p*q, the (semiprime) term where multiples of p end and multiples of q start. Example a(7+11-1) = a(17) = 77 = 11*7, the last multiple of 7 and first multiple of 11. Every string of multiples of prime p contains the term p^2, located at a(2*p-1). E.g.: a(3)=4, a(5)=9, a(9)=25. (End)

Crossrefs

Cf. A036441, A076272(n) = a(n+1) - a(n).
See also A180107.
Cf. A070229.

Programs

  • Haskell
    a076271 n = a076271_list !! (n-1)
    a076271_list = iterate a070229 1  -- Reinhard Zumkeller, Nov 07 2015
  • Mathematica
    NestList[#+FactorInteger[#][[-1,1]]&,1,60] (* Harvey P. Dale, May 11 2015 *)
  • PARI
    print1(n=1);for(i=1,199,print1(","n+=A006530(n))) \\ M. F. Hasler, Apr 08 2015
    

Formula

a(A076274(n)) = A008578(n)^2 for all n.
a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015

Extensions

Edited by M. F. Hasler, Apr 08 2015

A036441 a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.

Original entry on oeis.org

2, 4, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de)

Keywords

Comments

a(n) satisfies the following inequality: (1/4)*(n^2 + 3*n + 1) <= a(n) <= (1/4)*(n+2)^2. [Corrected by M. F. Hasler, Apr 08 2015]
The present sequence is the special case a(n) = a(2,n) with a more general a(m, n) := a(m, n-1) + gpf(a(m, n-1)), a(m, 1) := m, where gpf(x) := "greatest prime factor of x" = A006530(x). Also a(a(r,k), n) = a(r,n+k-1), for all n,k in N\{0} and all r in N\{0,1}; a(prime(k), n) = a(prime(i), n + prime(k) - prime(i)), for all k,i,n in N\{0}, with k >= i, n >= prime(k-1) and with prime(x) := x-th prime.
Essentially the same as A076271 and A180107, cf. formula.

Examples

			a(2,2) = 4 because 2 + gpf(2) = 2 + 2 = 4;
a(2,3) = 6 because 4 + gpf(4) = 4 + 2 = 6.
		

Crossrefs

Cf. A006530. See A076271 and A180107 for other versions.
Cf. A123581.
Partial sums of A076973.

Programs

  • Haskell
    a036441 n = a036441_list !! (n-1)
    a036441_list = tail a076271_list
    -- Reinhard Zumkeller, Nov 08 2015, Nov 14 2011
    
  • Mathematica
    f[n_]:=Last[First/@FactorInteger[n]];Join[{a=2},Table[a+=f[a],{n,2,100}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    NestList[#+FactorInteger[#][[-1,1]]&,2,60] (* Harvey P. Dale, Dec 02 2012 *)
  • PARI
    a(n)=(n+2-if(n\2+1<(p=nextprime(n\2+1))&&n+1M. F. Hasler, Apr 08 2015

Formula

a(n) = p(m)*(n+2-p(m)), where p(k) is the k-th prime and m is the smallest index such that n+2 <= p(m) + p(m+1). - Max Alekseyev, Oct 21 2008
a(n) = A076271(n+1) = A180107(n+2). - M. F. Hasler, Apr 08 2015
a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015

Extensions

Better description from Reinhard Zumkeller, Feb 04 2002
Edited by M. F. Hasler, Apr 08 2015

A180101 a(0)=0, a(1)=1; thereafter a(n) = largest prime factor of sum of all previous terms.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 41, 41, 41, 41
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2011

Keywords

Comments

More precisely, a(n) = A006530 applied to sum of previous terms.
Inspired by A175723.
Except for initial terms, same as A076272, but the simple definition warrants an independent entry.

Crossrefs

Cf. A006530, A076272, A175723, A180107 (partial sums).

Formula

For the purposes of this paragraph, regard 0 as the (-1)st prime and 1 as the 0th prime. Conjectures: All primes appear; the primes appear in increasing order; the k-th prime p(k) appears p(k+1)-p(k-1) times (cf. A031131); and p(k) appears for the first time at position A164653(k) (sums of two consecutive primes). These assertions are stated as conjectures only because I have not written out a formal proof, but they are surely true.

A367504 a(1) = 2; for n > 1, a(n) = a(n-1) + 2*gpf(a(n-1)), where gpf(k) = A006530(k) = greatest prime dividing k.

Original entry on oeis.org

2, 6, 12, 18, 24, 30, 40, 50, 60, 70, 84, 98, 112, 126, 140, 154, 176, 198, 220, 242, 264, 286, 312, 338, 364, 390, 416, 442, 476, 510, 544, 578, 612, 646, 684, 722, 760, 798, 836, 874, 920, 966, 1012, 1058, 1104, 1150, 1196, 1242, 1288, 1334, 1392, 1450, 1508, 1566, 1624, 1682, 1740, 1798
Offset: 1

Views

Author

Scott R. Shannon, Nov 21 2023

Keywords

Comments

Conjecture: with the requirement that the prime factorization of each term is written so that the primes are ordered from smallest to largest, the sequence is the lexicographically earliest infinite sequence of distinct positive numbers such that gpf(a(n-1)) * lpf(a(n)) = |a(n) - a(n-1)|, where gpf(k) = A006530(k) = greatest prime factor of k and lpf(k) = A020639(k) = least prime factor of k. In this way the sequence is the ordered prime factorization version of the 'Commas sequence', A121805. One can show that, for such a sequence to be infinite, no odd number can appear. Although for many terms a lower even number can be chosen for the following term, which can lead to even lower numbers for further terms, it is conjectured all such choices will ultimately halt the sequence as a number is eventually reached for which no unused next number exists which follows the required rule for the difference between the terms. Therefore all terms must be larger than the previous, and the earliest such infinite sequence is the given sequence.
See A367465 for the sequence when the requirement that the primes in the factorization of each term must be in order is removed.

Examples

			a(7) = 40 as a(6) = 30 = 2*3*5, thus A006530(30) = 5 and a(7) = a(6) + 2*5 = 30 + 2*5 = 40.
		

Crossrefs

Programs

  • Mathematica
    NestList[#+2FactorInteger[#][[-1,1]]&,2,100] (* Paolo Xausa, Dec 31 2023 *)

Formula

a(n) = 2*A123581(n). The exponent of 2 in a(2n) is 1+A367624(n). - N. J. A. Sloane, Dec 06 2023
Showing 1-5 of 5 results.