A180128 Maximal determinant of an n X n matrix whose elements are a permutation of the first n^2 prime numbers.
1, 2, 29, 6640, 4868296, 5725998504, 11305600374272, 35954639671827328
Offset: 0
Examples
a(2) = 29: . 7 3 . 2 5 a(3) = 6640: . 23 11 5 . 3 17 13 . 7 2 19 a(4) = 4868296: . 53 11 23 13 . 17 47 29 3 . 7 5 43 37 . 19 31 2 41 a(5) = 5725998504 . 89 41 23 2 53 . 31 97 29 47 11 . 59 13 79 61 7 . 37 19 5 83 67 . 3 43 71 17 73 a(6) = 11305600374272: . 137 73 7 89 83 13 . 79 139 67 19 3 97 . 101 5 149 61 37 53 . 2 109 103 71 113 11 . 59 29 41 17 131 127 . 23 47 43 151 31 107 a(7) = 35954639671827332: . 227 71 173 43 83 29 73 . 151 163 5 181 2 103 89 . 31 223 139 61 137 97 13 . 23 47 157 211 109 19 131 . 113 7 67 127 167 199 17 . 53 79 149 37 11 193 179 . 101 107 3 41 191 59 197
Links
- Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum JIPAM, Vol. 10, Iss. 3, Art. 63, 2008
- Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO]
- Index entries for sequences related to maximal determinants
Crossrefs
Extensions
a(7) corrected, based on private communication from Richard Gosiorovsky by Hugo Pfoertner, Aug 27 2021
a(0)=1 prepended by Alois P. Heinz, Jan 19 2022
Comments