cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258875 a(1) = a(2) = a(3) = 1; for n > 3, a(n) = ceiling((a(n-1) + a(n-2) + a(n-3))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 23, 29, 36, 44, 55, 68, 84, 104, 128, 158, 195, 241, 297, 367, 453, 559, 690, 851, 1050, 1296, 1599, 1973, 2434, 3003, 3705, 4571, 5640, 6958, 8585, 10592, 13068, 16123, 19892, 24542, 30279
Offset: 1

Views

Author

Morris Neene, Jun 13 2015

Keywords

Comments

First 14 terms are the same as A179241.
Ratio of consecutive terms approaches the real root of x^3 - (x^2 + x + 1)/2 = 0, whose approximate value is 1.2337519285, and whose exact value is (1 + (64 - 3*sqrt(417))^(1/3) + (64 + 3*sqrt(417))^(1/3))/6.
Same as A180235 for n > 5. - Georg Fischer, Oct 09 2018

Programs

  • Magma
    [n le 3 select 1 else Ceiling((Self(n-1)+Self(n-2)+ Self(n-3))/2): n in [1..60]]; // Vincenzo Librandi, Oct 10 2018
  • Maple
    a(4) = ceiling((1+1+1)/2) = 2;
    a(5) = ceiling((1+1+2)/2) = 2;
    a(6) = ceiling((1+2+2)/2) = 3.
  • Mathematica
    RecurrenceTable[{a[n] == Ceiling[(a[n - 1] + a[n - 2] + a[n - 3])/2], a[1] == a[2] == a[3] == 1}, a, {n, 1, 49}] (* Michael De Vlieger, Jun 20 2015 *)
    nxt[{a_,b_,c_}]:={b,c,Ceiling[(a+b+c)/2]}; NestList[nxt,{1,1,1},50][[All,1]] (* Harvey P. Dale, Feb 03 2022 *)
  • PARI
    lista(nn) = {va = vector(nn, n, if (n<=3, 1)); for (n=4, nn, va[n] = ceil((va[n-1]+va[n-2]+va[n-3])/2);); va;} \\ Michel Marcus, Jun 17 2015
    

A180234 Demi-tribonacci numbers (rounding down): a(0)=a(1)=0, a(2)=2; a(n) = floor( (a(n-1)+a(n-2)+a(n-3))/2 ).

Original entry on oeis.org

0, 0, 2, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 30, 37, 45, 56, 69, 85, 105, 129, 159, 196, 242, 298, 368, 454, 560, 691, 852, 1051, 1297, 1600, 1974, 2435, 3004, 3706, 4572, 5641, 6959, 8586, 10593, 13069, 16124, 19893, 24543, 30280, 37358, 46090
Offset: 0

Views

Author

Carl R. White, Aug 18 2010

Keywords

Crossrefs

Formula

a(0)=a(1)=0, a(2)=2; a(n) = floor( (a(n-1)+a(n-2)+a(n-3))/2 )
For n>9, a(n)=A180235(n-4)+1
a(n)/a(n-1) tends to 1.233751928528... which is a root of 2*x^3 - x^2 - x - 1 = 0
Showing 1-2 of 2 results.