A180253 Call two divisors of n adjacent if the larger is a prime times the smaller. a(n) is the sum of elements of all pairs of adjacent divisors of n.
0, 3, 4, 9, 6, 24, 8, 21, 16, 36, 12, 64, 14, 48, 48, 45, 18, 87, 20, 96, 64, 72, 24, 144, 36, 84, 52, 128, 30, 216, 32, 93, 96, 108, 96, 229, 38, 120, 112, 216, 42, 288, 44, 192, 174, 144, 48, 304, 64, 201, 144, 224, 54, 276, 144, 288, 160, 180, 60, 552, 62, 192, 232, 189
Offset: 1
Examples
a(4) = (1 + 2) + (2 + 4) = 9. a(120) = a(3*5*2^3) = 4*6*(3*8 + 4*4 + 4*2 + 3) = 1224.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
divisorSumPrime[n_] := DivisorSum[n, 1+1/# &, PrimeQ[#] &]; a[n_] := DivisorSum[n, #*divisorSumPrime[#]& ]; Array[a, 70] (* Amiram Eldar, Dec 17 2018 *)
-
PARI
a(n) = sumdiv(n, d, d*sumdiv(d, p, isprime(p)*(1+1/p))); \\ Michel Marcus, Dec 17 2018
-
PARI
a(n) = my(f = factor(n), res = 0); fordiv(n, d, for(i = 1, #f~, v = valuation(d, f[i, 1]); res+=(d * ((v > 0) + (v < f[i, 2]))))); res \\ David A. Corneth, Dec 17 2018
Formula
a(n) = Sum_{d|n} d*Sum_{p|d} (1 + 1/p) where p is restricted to primes.
a(n) = A323599(n) + A329354(n) = A323599(n) + A328260(n) + A329375(n). - Antti Karttunen, Nov 15 2019
a(p^k) = (p^k - 1)*(p + 1)/(p - 1).
a(p_1*p_2*...*p_m) = m*(p_1 + 1)*(p_2 + 1)*...*(p_m + 1).
a(p*q^k) = (p + 1)*(2*q^k + 3*q^(k - 1) + 3*q^(k - 2) + ... + 3*q + 2).
a(p*q*r^k) = (p + 1)*(q + 1)*(3*r^k + 4*r^(k - 1) + 4*r^(k - 2) + ... + 4*r + 3) and similar for a larger number of distinct prime factors of n.
Extensions
Definition rephrased, entries checked, one example added. - R. J. Mathar, Oct 25 2010
Comments