A190015
Triangle T(n,k) for solving differential equation A'(x)=G(A(x)), G(0)!=0.
Original entry on oeis.org
1, 1, 2, 1, 6, 8, 1, 24, 42, 16, 22, 1, 120, 264, 180, 192, 136, 52, 1, 720, 1920, 1248, 540, 1824, 2304, 272, 732, 720, 114, 1, 5040, 15840, 10080, 8064, 18720, 22752, 9612, 7056, 10224, 17928, 3968, 2538, 3072, 240, 1, 40320, 146160, 92160, 70560, 32256, 207360, 249120, 193536, 73728, 61560, 144720, 246816, 101844, 142704, 7936, 51048, 110448, 34304, 8334, 11616, 494, 1
Offset: 0
Triangle begins:
1;
1;
2,1;
6,8,1;
24,42,16,22,1;
120,264,180,192,136,52,1;
720,1920,1248,540,1824,2304,272,732,720,114,1;
5040,15840,10080,8064,18720,22752,9612,7056,10224,17928,3968,2538,3072,240,1;
40320,146160,92160,70560,32256,207360,249120,193536,73728,61560,144720,246816, 101844,142704,7936,51048,110448,34304,8334,11616,494,1;
Example for n=5:
partitions of number 9 into 5 parts in lexicographic order:
[1,1,1,1,5]
[1,1,1,2,4]
[1,1,1,3,3]
[1,1,2,2,3]
[1,2,2,2,2]
a(5) = (24*g(0)^4*g(4) +42*g(0)^3*g(1)*g(3) +16*g(0)^3*g(2)^2 +22*g(0)^2*g(1)^2*g(2) +g(0)*g(1)^4)/5!.
-
/* array of triangle */
M:[1,1,2,1,6,8,1,24,42,16,22,1,120,264,180,192,136,52,1,720,1920,1248,540,1824,2304,272,732,720,114,1,5040,15840,10080,8064,18720,22752,9612,7056,10224,17928,3968,2538,3072,240,1,40320,146160,92160,70560,32256,207360,249120,193536,73728,61560,144720,246816,101844,142704,7936,51048,110448,34304,8334,11616,494,1];
/* function of triangle */
T(n,k):=M[sum(num_partitions(i),i,0,n-1)+k+1];
/* count number of partitions of n into m parts */
b(n,m):=if n
-
/* Find triangle */
Co(n,k):=if k=1 then a(n) else sum(a(i+1)*Co(n-i-1,k-1),i,0,n-k);
a(n):=if n=1 then 1 else 1/n*sum(Co(n-1,k)*x(k),k,1,n-1);
makelist(ratsimp(n!*a(n)),n,1,5);
/* Vladimir Kruchinin, Jun 15 2012 */
-
serlaplace( serreverse( intformal( 1 / sum(n=0, 9, eval(Str("g"n)) * x^n, x * O(x^9))))) /* Michael Somos, Oct 22 2014 */
A376174
E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^4.
Original entry on oeis.org
1, 1, 9, 165, 4629, 175689, 8424801, 488756205, 33292495341, 2605108910481, 230300167685049, 22701604019859765, 2468971586334241989, 293687751861227612889, 37930838135497768301841, 5286141242516127169100925, 790686768925097978507354781, 126349187477795223746580576801
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 9*x^3/3! + 165*x^4/4! + 4629*x^5/5! + 175689*x^6/6! + 8424801*x^7/7! + 488756205*x^8/8! + 33292495341*x^9/9! + ...
where A'(x) = 1 + A(x)*A'(x)^4.
Also,
A'(x) = 1 + A(x) + 4*A(x)^2 + 22*A(x)^3 + 140*A(x)^4 + 969*A(x)^5 + 7084*A(x)^6 + 53820*A(x)^7 + ... + A002293(n)*A(x)^n + ...
RELATED SERIES.
Series D(x) = 1 + x*D(x)^4 begins
D(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + 53820*x^7 + ... + A002293(n)*x^n + ...
where Integral( dx/D(x) ) = x - x^2/2! - 6*x^3/3! - 90*x^4/4! - 2184*x^5/5! - 73440*x^6/6! - 3160080*x^7/7! - 165765600*x^8/8! + ...
and A(x) = Series_Reversion( Integral( dx/D(x) ) ).
A'(x)^4 = 1 + 4*x + 48*x^2/2! + 1008*x^3/3! + 30672*x^4/4! + 1229616*x^5/5! + 61348752*x^6/6! + 3668121072*x^7/7! + ...
-
nmax = 20; B[] = 1; Do[B[x] = 1 + Integrate[B[x], x]*B[x]^4 + O[x]^nmax // Normal, nmax]; A[x_] = Integrate[B[x], x]; CoefficientList[A[x]/x, x] * Range[nmax]! (* Vaclav Kotesovec, Sep 17 2024 *)
-
/* A'(x) = 1 + A(x)*A'(x)^4 */
{a(n) = my(A=x); for(i=1, n, A = intformal(1 + A*(A')^4 + x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n)", "))
-
/* A(x) = Series_Reversion( Integral( dx/D ) ) where D = 1 + x*D^4 */
{a(n) = my(D = ((1/x)*serreverse(x/(1 + x + x*O(x^n))^4))^(1/4), A); A = serreverse(intformal(1/D)); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n)", "))
A376175
E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^3.
Original entry on oeis.org
1, 1, 7, 97, 2035, 57445, 2042215, 87651865, 4410770875, 254705483725, 16603869256975, 1206175463317825, 96627476254984675, 8463175473211383925, 804573717383525464375, 82513390092813146091625, 9080444173122231239204875, 1067360792025339122846660125, 133468583774114314367364097375
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 7*x^3/3! + 97*x^4/4! + 2035*x^5/5! + 57445*x^6/6! + 2042215*x^7/7! + 87651865*x^8/8! + 4410770875*x^9/9! + ...
where A'(x) = 1 + A(x)*A'(x)^3.
Also,
A'(x) = 1 + A(x) + 3*A(x)^2 + 12*A(x)^3 + 55*A(x)^4 + 273*A(x)^5 + 1428*A(x)^6 + 7752*A(x)^7 + ... + A001764(n)*A(x)^n + ...
RELATED SERIES.
Series D(x) = 1 + x*D(x)^3 begins
D(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
where Integral( dx/D(x) ) = x - x^2/2! - 4*x^3/3! - 42*x^4/4! - 720*x^5/5! - 17160*x^6/6! - 524160*x^7/7! - 19535040*x^8/8! + ...
and A(x) = Series_Reversion( Integral( dx/D(x) ) ).
A'(x)^3 = 1 + 3*x + 27*x^2/2! + 423*x^3/3! + 9567*x^4/4! + 284355*x^5/5! + 10499715*x^6/6! + 464006655*x^7/7! + ...
-
/* A'(x) = 1 + A(x)*A'(x)^3 */
{a(n) = my(A=x); for(i=1, n, A = intformal(1 + A*(A')^3 + x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n)", "))
-
/* A(x) = Series_Reversion( Integral( dx/D ) ) where D = 1 + x*D^3 */
{a(n) = my(D = ((1/x)*serreverse(x/(1 + x + x*O(x^n))^3))^(1/3), A); A = serreverse(intformal(1/D)); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n)", "))
Showing 1-3 of 3 results.
Comments